ResNet:RevolutionizingDeepLearningforImageRecognition
- ResNet: Revolutionizing Deep Learning for Image Recognition
在深度学习领域,ResNet一直是研究的热点之一。它由两个卷积层和两个全连接层组成,被证明在图像分类任务中具有出色的性能。ResNet的出现,彻底改变了传统的卷积神经网络(CNN)的设计思路,成为图像识别领域的重要突破。本文将介绍ResNet的技术原理、实现步骤和应用场景。
1. 引言
在深度学习领域中,图像分类是一项非常重要的任务,它广泛应用于计算机视觉、自然语言处理、医学影像分析等领域。传统的CNN模型已经不能满足现代图像识别的需求,因此,研究人员提出了许多新的模型,包括ResNet。ResNet的出现,彻底改变了传统的卷积神经网络(CNN)的设计思路,成为图像识别领域的重要突破。
ResNet是由GoogleNet和Xception等模型的改进版本,其目标是解决深度卷积神经网络(deep CNN)在图像分类上的性能问题。ResNet主要由两个卷积层和两个全连接层组成,通过堆叠多个层次的卷积层和全连接层,实现对于图像的语义理解和特征提取。
2. 技术原理及概念
ResNet的技术原理基于深度卷积神经网络(deep CNN)的设计思路。在ResNet中,每个卷积层都由3x3和5x5大小的卷积核和ReLU激活函数组成,而每个全连接层都由3x3和5x5大小的全连接层和ReLU激活函数组成。此外,ResNet引入了层间残差连接(residual connection),使得模型能够更好地捕捉模型之间的信息。
3. 实现步骤与流程
下面是ResNet的实现步骤与流程:
3.1 准备工作:环境配置与依赖安装
在开始使用ResNet之前,我们需要对计算环境进行配置和安装依赖项。这里我们需要使用Python作为开发环境,并且需要安装NumPy、Pandas和Matplotlib等常用工具。
具体来说,我们需要安装以下依赖项:
pip install numpy pandas matplotlib numpy-可视化
3.2 核心模块实现
在核心模块中,我们实现了ResNet的卷积层和全连接层,以及用于计算损失函数和优化算法的模块。在实现过程中,我们需要对每个卷积层和全连接层进行训练和测试,直到达到预设的收敛条件。
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
# 构建卷积层和全连接层
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
# 训练和测试模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_val, y_val))
# 输出预测结果
model.predict(X_test)
3.3 集成与测试
在集成和测试模型之前,我们需要将训练好的模型保存在一个合适的格式中,以便于后续的使用。这里我们使用了keras的“Sequential”模型来构建模型,并将其保存在HDF5格式中。
model.save('model.h5')
3.4 优化与改进
在模型训练过程中,我们可能会遇到一些性能问题,比如过拟合或者欠拟合。为了解决这些问题,我们需要使用一些优化算法来改进模型的性能。在这里,我们使用了梯度下降(GD)和随机梯度下降(SGD)算法来优化模型。
from keras.optimizers import SGD
# 初始化模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_val, y_val),
optimizer=sGD(lr=0.001, validation_loss=0.01))
# 评估模型
model.evaluate(X_test, y_test)
# 输出性能指标
print('Accuracy:', model.accuracy_score(X_test, y_test))
4. 示例与应用
下面是一个简单的ResNet示例,它用于分类图片中的对象,具有较高的准确性。
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
# 构建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
# 训练模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_val, y_val))
# 输出预测结果
model.predict(X_test)
ResNet:RevolutionizingDeepLearningforImageRecognition的更多相关文章
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
- 残差网络resnet学习
Deep Residual Learning for Image Recognition 微软亚洲研究院的何凯明等人 论文地址 https://arxiv.org/pdf/1512.03385v1.p ...
- 使用dlib中的深度残差网络(ResNet)实现实时人脸识别
opencv中提供的基于haar特征级联进行人脸检测的方法效果非常不好,本文使用dlib中提供的人脸检测方法(使用HOG特征或卷积神经网方法),并使用提供的深度残差网络(ResNet)实现实时人脸识别 ...
- 经典卷积神经网络(LeNet、AlexNet、VGG、GoogleNet、ResNet)的实现(MXNet版本)
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷 ...
- 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...
- 深度学习基础网络 ResNet
Highway Networks 论文地址:arXiv:1505.00387 [cs.LG] (ICML 2015),全文:Training Very Deep Networks( arXiv:150 ...
- 卷积神经网络的一些经典网络(Lenet,AlexNet,VGG16,ResNet)
LeNet – 5网络 网络结构为: 输入图像是:32x32x1的灰度图像 卷积核:5x5,stride=1 得到Conv1:28x28x6 池化层:2x2,stride=2 (池化之后再经过激活函数 ...
- [论文阅读] Deep Residual Learning for Image Recognition(ResNet)
ResNet网络,本文获得2016 CVPR best paper,获得了ILSVRC2015的分类任务第一名. 本篇文章解决了深度神经网络中产生的退化问题(degradation problem). ...
- 学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)
视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等).当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自 ...
- 深入解读Resnet
残差网络的设计目的 随着网络深度增加,会出现一种退化问题,也就是当网络变得越来越深的时候,训练的准确率会趋于平缓,但是训练误差会变大,这明显不是过拟合造成的,因为过拟合是指网络的训练误差会不断变小,但 ...
随机推荐
- 介绍一下js垃圾回收机制
JavaScript中的垃圾回收机制负责自动管理内存,回收不再使用的对象所占用的内存空间.在JavaScript中,开发者不需要显式地分配和释放内存,垃圾回收器会自动完成这些操作.以下是关于JavaS ...
- 执行计划display_cursor函数
问题描述:关于oracle查看真实的执行计划,使用select * from table(dbms_xplan.display_cursor(null,null));的方式来获取执行计划 参考文档:h ...
- zookeeper重启,线上微服务全部掉线,怎么回事?
注册中心zookeeper被重启,线上微服务全部掉线,怎么回事?! 最近因为一次错误的运维操作,导致线上注册中心zk被重启.而zk重启后发现所有线上微服务开始不断掉线,造成了持续30分钟的P0故障. ...
- 【Dotnet 工具箱】跨平台图表库 LiveCharts2
你好,这里是 Dotnet 工具箱,定期分享 Dotnet 有趣,实用的工具和组件,希望对您有用! LiveCharts2 LiveCharts2 是一个简单.灵活.交互式以及功能强大的跨平台图表库. ...
- 手动编写Swagger文档与部署指南
Swagger介绍 在Web开发中,后端开发者在完成接口开发后,需要给前端相应的接口使用说明,所以一般会写一份API文档.一般来说,有两种方式提供API接口文档,一种是利用插件在代码中自动生成,另一种 ...
- 每天掌握10道面试题,轻轻松松去面试(Yes, that's right, I'm kidding)!!!
一.4.12 1.说一说cookie sessionStorage localStorage 是什么,有什么区别? Cookie.sessionStorage 和 localStorage 都是在浏览 ...
- 微软出品的UI自动化测试工具Playwright(三)
微软出品的UI自动化测试工具Playwright(三) 网址 说明 https://playwright.dev/ 官网首页 https://playwright.dev/python/docs/in ...
- 道德与社会问题简报 #3: Hugging Face 上的道德开放性
使命: 开放和优秀的机器学习 在我们的使命中,我们致力于推动机器学习 (ML) 的民主化,我们在研究如何支持 ML 社区工作并有助于检查危害和防止可能的危害发生.开放式的发展和科学可以分散力量,让许多 ...
- 3385. 【NOIP2013模拟】黑魔法师之门
3385. [NOIP2013模拟]黑魔法师之门 题目大意: 做法: 代码: 题目大意: 给你一个无向无权图,每次询问加入一条边问你图中每个点的度数大于零且都是偶数的子图的个数对1000000009取 ...
- 15-js语法检查eslint
const { resolve } = require('path'); const HtmlWebpackPlugin = require('html-webpack-plugin'); modul ...