prometheus Histogram 统计原理
大家好,我是蓝胖子,书接上文,我在prometheus描点原理那一篇文章里,留了一个思考题:
我们通常会用到histogram_quantile去计算服务接口时间的耗时情况。
histogram_quantile(0.99,rate(server_handle_seconds_bucket{}[1m]))
但是rate函数会将原指标按时间求斜率,这样会影响原本分位数的计算吗?
先说下结论,不影响分位数结果的计算。要解释这个问题,还是要看看分位数统计Histogram的原理。
Histogram指标内容
在解释统计原理之前,我们先看看Histogram指标指标究竟是如何存储的,当我们用prometheus 客户端创建一个Histogram监控数据类型时,其本质上会创建一组指标,如下所示:
注意概念,在prometheus中,如果指标名和标签完全相同,那么将会认为他们是同一个指标,将携带有时间戳的指标 称为指标的样本。prometheus server web控制台查询出来的就是样本。
# TYPE server_handle_seconds histogram
server_handle_seconds_bucket{type="http",le="0.005"} 0
server_handle_seconds_bucket{type="http",le="0.01"} 0
server_handle_seconds_bucket{type="http",le="0.025"} 0
server_handle_seconds_bucket{type="http",le="0.05"} 0
server_handle_seconds_bucket{type="http",le="0.1"} 0
server_handle_seconds_bucket{type="http",le="0.25"} 0
server_handle_seconds_bucket{type="http",le="0.5"} 0
server_handle_seconds_bucket{type="http",le="1"} 0
server_handle_seconds_bucket{type="http",le="2.5"} 0
server_handle_seconds_bucket{type="http",le="5"} 0
server_handle_seconds_bucket{type="http",le="10"} 37092
server_handle_seconds_bucket{type="http",le="+Inf"} 37092
server_handle_seconds_sum{type="http"} 370920
server_handle_seconds_count{type="http"} 37092
le标签可以认为是Histogram监控数据类型特有的标签,含义是桶的上边界, 拿上述指标server_handle_seconds_bucket{type="http",le="10"} 举例,这个指标的值是37092,表示小于等于10s的请求有37092次。直方图Histogram每个桶中统计的次数包含了前面的桶的次数。
histogram_quantile在计算分位数时,就是判断指标样本中是否携带le标签,是的话才会纳入分位数的计算中。并且histogram_quantile函数是拿一组瞬时向量进行计算的,计算后得到一个分位数。
注意下概念,在prometheus中,向量vector是指 单个时间点的指标样本,矩阵matrix是一组时间点的样本。无论是vector还是matrix,他们都可以是多个指标,不过区别在于指标的样本是单个时间点的,还是一组时间节点的。
拿上述指标举例,histogram_quantile 计算时就是拿指标名为server_handle_seconds_bucket的指标集合 某个时间节点的指标值进行计算的。指标集合包含下面几个指标
## 指标名和标签 指标值
server_handle_seconds_bucket{type="http",le="0.005"} 0
server_handle_seconds_bucket{type="http",le="0.01"} 0
server_handle_seconds_bucket{type="http",le="0.025"} 0
server_handle_seconds_bucket{type="http",le="0.05"} 0
server_handle_seconds_bucket{type="http",le="0.1"} 0
server_handle_seconds_bucket{type="http",le="0.25"} 0
server_handle_seconds_bucket{type="http",le="0.5"} 0
server_handle_seconds_bucket{type="http",le="1"} 0
server_handle_seconds_bucket{type="http",le="2.5"} 0
server_handle_seconds_bucket{type="http",le="5"} 0
server_handle_seconds_bucket{type="http",le="10"} 37092
server_handle_seconds_bucket{type="http",le="+Inf"} 37092
所以我们在计算时为什么要将server_handle_seconds_bucket{}[1m] 用rate函数进行计算,因为单独的server_handle_seconds_bucket{}[1m] 返回的数据类型是matrix类型,是一组时间节点的样本,即某个 桶类型的指标有多个样本值,而 histogram_quantile 只要求一个桶类型的指标(携带le的指标)只有一个样本值。所以通过rate函数将一个矩阵类型的数据变成了向量类型
histogram_quantile 统计分位数原理
搞懂了为什么要用rate函数,再来看看为什么rate函数改变了桶的大小后不会对分位数计算逻辑产生影响。
拿文章开头的计算分位数的表达式举例
histogram_quantile(0.99,rate(server_handle_seconds_bucket{}[1m]))
我们需要计算指标名为server_handle_seconds_bucket 在过去1分钟内的数据的百分之99分位数。
histogram_quantile计算步骤如下:
1, 首先会拿最后一个桶中(因为最后一个桶包含了所有样本的个数)的统计的次数去乘以分位数,看下第99分位是所有样本数据中的第几个,假设用rank变量存储这个结果。
2,拿上一步的计算结果rank值挨个桶比较统计次数,找到第一个桶的次数大于等于rank值的桶。这一步就计算出了99分位的样本是在哪个桶里。
3,最后通过下面的计算估算99分位数是多少
bucketStart + (bucketEnd-bucketStart)*(rank/count)
bucketEnd 和bucketStart是桶的上下边界值,估算分位数是多少时,是默认在这个桶内,数据是线性均匀分布的,所以拿(bucketEnd-bucketStart)*(rank/count) 估算出99分为的数在这个桶内的偏移量。
所以,你可以看到分位数的计算虽然用到了count值,但是是拿count值和rank值相除得到一个比例,rate函数虽然将桶指标的count值变小了,但由于计算时,我仅仅是求一个比例值,所以对分位数的结果运算并不影响。
prometheus Histogram 统计原理的更多相关文章
- Monitor Minio server with Prometheus
转自:https://blog.minio.io/monitor-minio-server-with-prometheus-4ed537abcb74 Prometheus is an open sou ...
- openresty(完整版)Lua拦截请求与响应信息日志收集及基于cjson和redis动态路径以及Prometheus监控(转)
直接上文件 nginx.conf #运行用户和组,缺省为nobody,若改为别的用户和组,则需要先创建用户和组 #user wls81 wls; #开启进程数,一般与CPU核数等同 worker_pr ...
- 用prometheus监控Nginx
GitHub上官方地址:https://github.com/knyar/nginx-lua-prometheus 告警规则地址:https://awesome-prometheus-alerts.g ...
- 如何区分prometheus中Histogram和Summary类型的metrics?
要理解它们的区别,关键还是告业务应用. 但如何在学习时,如何区分呢? 有以下几个维度: histogram有bucket,summary在quatile. summary分位数是客户端计算上报,his ...
- Prometheus Metrics 设计的最佳实践和应用实例,看这篇够了!
Prometheus 是一个开源的监控解决方案,部署简单易使用,难点在于如何设计符合特定需求的 Metrics 去全面高效地反映系统实时状态,以助力故障问题的发现与定位.本文即基于最佳实践的 Metr ...
- Prometheus 系统监控方案 一
最近一直在折腾时序类型的数据库,经过一段时间项目应用,觉得十分不错.而Prometheus又是刚刚推出不久的开源方案,中文资料较少,所以打算写一系列应用的实践过程分享一下. Prometheus 是什 ...
- prometheus client_golang使用
序言 Prometheus是一个开源的监控系统,拥有许多Advanced Feature,他会定期用HTTP协议来pull所监控系统状态进行数据收集,在加上timestamp等数据组织成time se ...
- Prometheus(转载)
Prometheus 系统监控方案 一 https://www.cnblogs.com/vovlie/p/Prometheus_CONCEPTS.html 最近一直在折腾时序类型的数据库,经过一段时间 ...
- Prometheus监控数据格式学习
本文大纲: • prometheus metrics的概念• k/v的数据形式• prometheus exporter的使⽤(pull形式采集数据)• prometheus pushgateway的 ...
- prometheus监控示例
prometheus架构图 prometheus 各组件介绍 Prometheus Server: 使用pull方式采集监控数据,在该组件上配置监控数据的采集和告警规则. Client Library ...
随机推荐
- 腾讯出品小程序自动化测试框架【Minium】系列(七)测试框架的设计和开发
前言 整个框架的开发及调通是在3月27日晚上22点完成,如下: 这篇文章真的是拖了太久了,久到我居然把代码部分完成后,彻底给忘了,这记性,真的是年纪大了! 框架的设计开发 1.框架搭建设计要素 日志& ...
- 阿里版ChatGPT:通义千问pk文心一言
随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...
- 请求被中止: 未能创建 SSL/TLS 安全通道 解决方案
最近项目改造https,有部分请求出现"请求被中止: 未能创建 SSL/TLS 安全通道". 原因应该是,接口方变更了安全协议,而客户端并未启用该协议. 解决办法自然就是:让客户端 ...
- Springboot集成MyBatis进行开发
引入相关的依赖 <dependency> <groupId>junit</groupId> <artifactId>junit</artifact ...
- layUI之DataTable组件V1.0(父子表管理传值/数据表格与select&laydate结合等)
layUI之DataTable数据表格组件V1.0 目录 layUI之DataTable数据表格组件V1.0 概述 一.下载与引用 二.组件功能介绍 三.父表格渲染 1. HTML中声明空table一 ...
- Redis 数据类型 Zset
Redis 数据类型 Zset(有序集合) Redis 常用命令,思维导图 >>> zset是Redis提供的一个非常特别的数据结构,常用作排行榜等功能,以用户id为value,关注 ...
- JavaScript 发布-订阅设计模式实现 React EventBus(相当于vue的$Bus)非父子之间通信
提前声明: 我没有对传入的参数进行及时判断而规避错误,仅仅对核心方法进行了实现: 解决了react的非父子间的通信: 参考文档:https://github1s.com/browserify/even ...
- Mysql8.0为什么取消了缓存查询的功能
首先我们介绍一下MySQL的缓存机制 [MySQL缓存机制]简单的说就是缓存sql文本及查询结果,如果运行完全相同的SQL,服务器直接从缓存中取到结果,而不需要再去解析和执行SQL. 但如果表中任何数 ...
- Ldap同步过滤问题
https://docs.oracle.com/cd/E26217_01/E35191/html/ldap-filters-attrs-users.html
- 笔记:C++学习之旅 ---string 类、vector和迭代器
string 类 #include <iostream> #include <string> using namespace std; int main() { ...