前言

天下武功,唯快不破。同样的,kafka在消息队列领域,也是非常快的,这里的块指的是kafka在单位时间搬运的数据量大小,也就是吞吐量,下图是搬运网上的一个性能测试结果,在同步发送场景下,单机Kafka的吞吐量高达17.3w/s,不愧是高吞吐量消息中间件的行业老大。

那究竟是什么原因让kafka如此之快呢?这也是面试官非常喜欢问的问题。

四个原因

原因一:磁盘顺序读写

生产者发送数据到kafka集群中,最终会写入到磁盘中,会采用顺序写入的方式。消费者从kafka集群中获取数据时,也是采用顺序读的方式。

无论是机械磁盘还是固态硬盘SSD,顺序读写的速度都是远大于随机读写的。因为对于机械磁盘顺序读写省去了磁头频繁寻址和旋转盘片的开销。而固态硬盘就更加复杂,这里不展开阐述。

下图是网上关于读写方式的性能比较。

  • 机械磁盘顺序读写 53M/s,随读写 316k/s
  • 固态硬盘顺序读写 42M/s, 随机读写 1000k/s

因而,由于kafka一般使用机械磁盘存储消息,因为机械磁盘的价格远小于固态硬盘SSD。

原因二:PageCache页缓存技术

前面提到了kafka采用顺序读写写入到磁盘中,难道是直接kafka到磁盘吗,实际上不是的,中间多了一道操作系统的PageCache页缓存,可以理解为内存。

  • 当kafka有写操作时,先将数据写入PageCache中,然后在定时方式顺序写入到磁盘中。
  • 当读操作发生时,先从PageCache中查找,如果找不到,再去磁盘中读取。

通过页缓存技术,更近一步的提高了读写的性能。

原因三:零拷贝技术

kafka之所以快的另外一个原因是采用了零拷贝技术。

首先我们来看下从磁盘读取数据到网卡场景下,传统IO的整个过程,如下图所示:

传统IO模型下,从磁盘读取数据,写到网卡设备中,经历了4次用户态和内核态之间的切换,以及4次数据的拷贝,包括CPU拷贝和DMA拷贝。这些操作都是十分损耗性能。

DMA, Direct Memory Access, 直接内存访问是一些计算机总线架构提供的功能,它能使数据从附加设备(如磁盘驱动器)直接发送到计算机主板的内存上。

那能否减少这样的切换和拷贝呢? 答案是肯定的,不知道大家发下没有,kafka的消息在应用层做任何转换,怎么存就怎么取,你看连序列化、反序列化都是在生产者和消费者做的。所以kafka采用了sendfile的零拷贝技术

sendfile零拷贝技术在内核态将数据从PageCache拷贝到了Socket缓冲区,这样就大大减少了不同形态的切换以及拷贝。

所谓的零拷贝技术不是指不发生拷贝,而是在用户态没有进行拷贝。

原因四:kafka分区架构和批量操作

一方面kafka的集群架构采用了多分区技术,并行度高。另外一方面,kafka采用了批量操作。生产者发送的消息先发送到一个队列,然后有sender线程批量发送给kafka集群。

如何提高生产者的吞吐量?

kafka生产者提供的一些配置参数可以有助于提高生产者的吞吐量。

参数名称 描述
buffer.memory RecordAccumulator 缓冲区总大小,默认 32m。适当增加该值,可以提高吞吐量。
batch.size 缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。
linger.ms 如果数据迟迟未达到 batch.sizesender线程等待 linger.time之后就会发送数据。单位 ms,默认值是 0ms,表示没有延迟。生产环境建议该值大小为 5-100ms 之间。
compression.type 指定消息的压缩方式,默认值为“none ",即默认情况下,消息不会被压缩。该参数还可以配置为 "gzip","snappy" 和 "lz4"。对消息进行压缩可以极大地减少网络传输、降低网络 I/O,从而提高整体的性能 。

如何提高消费者的吞吐量?

  1. 如果是Kafka消费能力不足,则可以考虑增加Topic的分区数,并且同时提升消费组的消费者数量,消费者数 = 分区数,并发度最高
  2. 如果是下游的数据处理不及时:提高每批次拉取的数量。批次拉取数据过少,使处理的数据小于生产的数据,也会造成数据积压。
  • fetch.max.bytes:默认 Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝、对最大值。一批次的大小受 message.max.bytes (broker config)or max.message.bytes (topic config)影响。
  • max.poll.records:一次 poll 拉取数据返回消息的最大条数,默认是 500
  1. 优化消费者代码处理的逻辑。

总结

本文总结了Kafka为什么快的原因,4个关键字,磁盘顺序读写,页缓存技术,零拷贝技术,Kafka本身分区机制和批量操作。我们抓住这4个关键字,有点到面地和面试官娓娓道来。

Kafka 在性能上确实是一骑绝尘,但在消息选型过程中,我们不仅仅要参考其性能,还有从功能性上来考虑,例如 RocketMQ 提供了丰富的消息检索功能、事务消息、消息消费重试、定时消息等。

通常在大数据、流式处理场景基本选用 Kafka,业务处理相关选择 RocketMQ更佳。

欢迎关注个人公众号【JAVA旭阳】交流学习

面试官问:kafka为什么如此之快?的更多相关文章

  1. 面试官问我,Redis分布式锁如何续期?懵了。

    前言 上一篇[面试官问我,使用Dubbo有没有遇到一些坑?我笑了.]之后,又有一位粉丝和我说在面试过程中被虐了.鉴于这位粉丝是之前肥朝的粉丝,而且周一又要开启新一轮的面试,为了回馈他长期以来的支持,所 ...

  2. 当面试官问我ArrayList和LinkedList哪个更占空间时,我这么答让他眼前一亮

    前言 今天介绍一下Java的两个集合类,ArrayList和LinkedList,这两个集合的知识点几乎可以说面试必问的. 对于这两个集合类,相信大家都不陌生,ArrayList可以说是日常开发中用的 ...

  3. 「干货」面试官问我如何快速搜索10万个矩形?——我说RBush

    「干货」面试官问我如何快速搜索10万个矩形?--我说RBUSH 前言 亲爱的coder们,我又来了,一个喜欢图形的程序员‍,前几篇文章一直都在教大家怎么画地图.画折线图.画烟花,难道图形就是这样嘛,当 ...

  4. 每日一问:面试结束时面试官问"你有什么问题需要问我呢",该如何回答?

    面试结束时面试官问"你有什么问题需要问我呢",该如何回答?

  5. 面试官问,说一个你在工作非常有价值的bug

    如果你去参考面试,做足了准备,面对面试官员从容不迫,吐沫横飞的大谈自己的工作经历.突然,面试官横插一句:说一个你在工作非常有价值的bug.顿时,整个空气都仿佛都凝固了!“What?”... 我想没几个 ...

  6. 面试官问:JS的this指向

    前言 面试官出很多考题,基本都会变着方式来考察this指向,看候选人对JS基础知识是否扎实.读者可以先拉到底部看总结,再谷歌(或各技术平台)搜索几篇类似文章,看笔者写的文章和别人有什么不同(欢迎在评论 ...

  7. 当面试官问你sql优化的时候。。。

    当面试官问你有关sql优化的问题时,直接拿笔写给他: 8-select 9-distinct<column_list> 1-from left_table 3-<join_type& ...

  8. 面试官问你JS基本类型时他想知道什么?

    面试的时候我们经常会被问答js的数据类型.大部分情况我们会这样回答包括:1.基本类型(值类型或者原始类型): Number.Boolean.String.NULL.Undefined以及ES6的Sym ...

  9. 面试官问线程安全的List,看完再也不怕了!

    最近在Java技术栈知识星球里面有球友问到了线程安全的 List: 扫码查看答案或加入知识星球 栈长在之前的文章<出场率比较高的一道多线程安全面试题>里面讲过 ArrayList 的不安全 ...

  10. 美团面试官问我一个字符的String.length()是多少,我说是1,面试官说你回去好好学一下吧

    本文首发于微信公众号:程序员乔戈里 public class testT { public static void main(String [] args){ String A = "hi你 ...

随机推荐

  1. SpringCloud Fegin 负载均衡

    Spring Cloud Ribbon 和 Spring Cloud Hystrix 在微服务中实现了客户端负载均衡的服务调用以及通过断路器来保护微服务应用.这两者作为基础工具类框架广泛地应用在各个微 ...

  2. 支付回调MQ消息的幂等处理及MD5字符串es中的使用及支付宝预授权完成

    支付回调MQ消息的幂等处理及MD5字符串es中的使用及支付宝预授权完成 1.幂等的处理,根据对象的转json 转md5作为key,退款的处理 控制发送端?业务上比较难控制.支付异步通知,退款有同步通知 ...

  3. 基于docker和cri-dockerd部署k8sv1.26.3

    cri-dockerd是什么? 在 Kubernetes v1.24 及更早版本中,我们使用docker作为容器引擎在k8s上使用时,依赖一个dockershim的内置k8s组件:k8s v1.24发 ...

  4. go微服务框架kratos学习笔记二(kratos demo 结构)

    目录 api cmd configs dao di model server service 上篇文章go微服务框架kratos学习笔记一(kratos demo)跑了kratos demo 本章来看 ...

  5. 《花雕学AI》17:关注提示工程—本世纪最重要的技能可能就是与AI人工智能对话

    本文目录与主要结构 引言:介绍提示工程的概念和背景,说明为什么它是本世纪最重要的技能之一. 正文: 一.提示工程的基本原理和方法:介绍什么是提示.如何设计和优化提示.如何使用提示与语言模型进行交互. ...

  6. 【SpringMVC】(三)

    HTTPMessageConverter HttpMessageConverter报文信息转换器,将请求报文转换为java对象,或将java对象转换为响应报文. 1 @ResquestBody Res ...

  7. jdbc-plus是一款基于JdbcTemplate增强工具包, 基于JdbcTemplate已实现分页、多租户等插件,可自定义扩展插件

    jdbc-plus简介 jdbc-plus是一款基于JdbcTemplate增强工具包, 基于JdbcTemplate已实现分页.多租户等插件,可自定义扩展插件.项目地址: https://githu ...

  8. Xxl-job安装部署以及SpringBoot集成Xxl-job使用

    1.安装Xxl-job: 可以使用docker拉取镜像部署和源码编译两种方式,这里选择源码编译安装. 代码拉取地址: https://github.com/xuxueli/xxl-job/tree/2 ...

  9. Python Requets库学习总结

    快速开始 发送请求 >>> import requests >>> r = requests.get('https://api.github.com/events' ...

  10. Redis缓存穿透、击穿、雪崩

    文章目录 缓存穿透 缓存雪崩 缓存击穿 代码实战部分 缓存击穿实战代码封装 缓存穿透解决 Redis目前是非常流行的缓存数据库,缓存穿透.缓存击穿.缓存雪崩是常见的面试题,也是非常重要的问题. 缓存穿 ...