题目


分析

处理出所有点到根节点的答案,然后换根依次求最小值


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
typedef long long lll; const int N=200011;
struct node{int y,w,next;}e[N<<1];
lll dp[N],W[N],ans=1e18,s; int n,k=1,a[N],as[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline lll min(lll a,lll b){return a<b?a:b;}
inline void dfs1(int x,int fa){
W[x]=a[x];
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=fa){
dfs1(e[i].y,x);
dp[x]+=dp[e[i].y]+e[i].w*W[e[i].y];
W[x]+=W[e[i].y];
}
}
inline void dfs2(int x,int fa){
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=fa){
dp[e[i].y]=dp[x]-W[e[i].y]*e[i].w+(s-W[e[i].y])*e[i].w;
dfs2(e[i].y,x);
}
}
signed main(){
n=iut();
for (rr int i=1;i<=n;++i) a[i]=iut(),s+=a[i];
for (rr int i=1;i<n;++i){
rr int x=iut(),y=iut(),w=iut();
e[++k]=(node){y,w,as[x]},as[x]=k;
e[++k]=(node){x,w,as[y]},as[y]=k;
}
dfs1(1,0),dfs2(1,0);
for (rr int i=1;i<=n;++i) ans=min(ans,dp[i]);
return !printf("%lld",ans);
}

#换根dp#洛谷 2986 [USACO10MAR]Great Cow Gathering G的更多相关文章

  1. 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)

    P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...

  2. BZOJ 1827 洛谷 2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gather

    [题解] 很容易想到暴力做法,枚举每个点,然后对于每个点O(N)遍历整棵树计算答案.这样整个效率是O(N^2)的,显然不行. 我们考虑如果已知当前某个点的答案,如何快速计算它的儿子的答案. 显然选择它 ...

  3. 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP

    洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...

  4. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  5. 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$

    正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...

  6. Codeforces 891D - Sloth(换根 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 换根 dp 好题. 为啥没人做/yiw 首先 \(n\) 为奇数时答案显然为 \(0\),证明显然.接下来我们着重探讨 \(n\) 是偶数 ...

  7. Codeforces 997D - Cycles in product(换根 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 一种换根 dp 的做法. 首先碰到这类题目,我们很明显不能真的把图 \(G\) 建出来,因此我们需要观察一下图 \(G\) 有哪些性质.很 ...

  8. [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]

    题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...

  9. 2018.10.15 NOIP训练 水流成河(换根dp)

    传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...

  10. 小奇的仓库:换根dp

    一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...

随机推荐

  1. python开发接口时,使用jsonschema模块对数据进行校验

    import jsonschema schema = { "type": "object", # 先声明每个键都是对象 "properties&quo ...

  2. 【算法day3】小和、荷兰国旗、快排

    小和问题 现有数组[1,3,4,2,5] 1左边是0(小于1),所以1的小和为0 3左边是1(小于3),所以3的小和为1 4左边是1.3(均小于4),所以4的小和为1+3=4 2左边是1.3.4(只有 ...

  3. ABP开发需要用到的命令

    0.命令行在哪里执行? 在Visual Studio的"解决方案资源管理器"的解决方案或者项目上点鼠标右键,选择"在终端中打开". 1.安装abp的命令行 官网 ...

  4. CentOS系统下,配制nginx访问favicon.ico

    sudo vim /etc/nginx/nginx.conf 添加以下配制: # set site faviconlocation /favicon.ico { root html;} 完整配置如下: ...

  5. Java实现对ES数据的新增,删除,修改,及合并

    Java实现对ES数据的新增,删除,修改,及合并 新增数据 代码: @Autowired private RestHighLevelClient client; /** * @description ...

  6. 多个 .NET Core SDK 版本之间进行切换 global.json

    由于同一台电脑可以安装多个版本的.NET Core SDK. 当安装了许多不同版本的.NET Core SDK 之后,要如何才能使用旧版dotnet 命令,执行dotnet new 或dotnet b ...

  7. 摆脱鼠标系列 - 打开微信(Alt+V) - 打开双核浏览器(Alt+S) - HotkeyP

    摆脱鼠标系列 - 打开微信(Alt+V) - 打开双核浏览器(Alt+S) - HotkeyP 新定义了两个快捷键 这两个比较常用

  8. Kotlin学习快速入门(11)—— 枚举类的使用

    原文地址:Kotlin学习快速入门(11)-- 枚举类的使用 - Stars-One的杂货小窝 由于有时候偶尔用到枚举类,所以简单记录一下,和Java的一起对比记录 下面以一个简单的四季设计一个枚举类 ...

  9. docker如何以root身份登录

    有时候我们需要进入docker容器时以root身份进入,这边汇总了两种方式如下 第一种 docker exec -it --user=root container_id /bin/bash 第二种 d ...

  10. linux命令行下使用代理

    有两种方法: 1.curl -x <proxy_ip>:<proxy_port> <real_website> 举例:curl -x 12.99.109.52:80 ...