Pytorch实现YOLOv3训练自己的数据集
1.说明:
最近一直在研究深度学习框架PyTorch,就想使用pytorch去实现YOLOv3的object detection.在这个过程中也在各大论坛、贴吧、CSDN等中看了前辈们写的文章,在这里由衷的感谢帮助过我的朋友们,真的很感谢!!!!
接下来就将这一过程写在下面,希望对在学习计算机视觉的小伙伴有一定的帮助2.环境:
笔者的环境:
ubuntu18.04
PyTorch 1.1.0
anaconda
opencv-python
tqdm
matplotlib
pycocotools
如果没有实验环境可以使用如下的方法进行构建:
建议大家安装anaconda,安装过程自行Google,这里就不做过多的解释了
pip install opencv-python
pip install tqdm
pip install matplotlib
pip install pycocotools
制作数据集
制作数据集时,我们需要使用labelImge标注工具,安装过程请参考安装标注工具

本次我们使用的数据集已经标注好了,我们直接拿过来用:https://github.com/cosmicad/dataset

相关准备
https://github.com/ultralytics/yolov3
首先从上述链接上将pytorch框架clone下来,放在pycharm的工程目录下,这里我把文件重新命名为YOLOV3,这个随便大家。

需要说明一下,clone下来的文件一开始是没有makeTxt.py和voc_label.py文件的,这两个需要我们后面自己写代码数据装载
将数据集Annotations、JPEGImages复制到YOLOV3工程目录下的data文件下;同时新建两个文件夹,分别命名为ImageSets和labels,最后我们将JPEGImages文件夹复制粘贴一下,并将文件夹重命名为images

构建代码
在工程的根目录下新建一个文件makeTxt.py,代码如下:
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
接着再新建另一个文件voc_label.py,代码如下:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train', 'test','val']
classes = ["RBC"]
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('data/Annotations/%s.xml' % (image_id))
out_file = open('data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
list_file = open('data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('data/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
分别运行makeTxt.py和voc_label.py
运行makeTxt.py后ImagesSets后面会出现四个文件,如下图:
主要存储图片名称

运行voc_label.py后labels后,如下图所示:
这里得到的不光是文件名,还有文件的具体路径

接着还要配置两个文件
在data文件下新建rbc.data,配置内容如下:
classes=1
train=data/train.txt
valid=data/test.txt
names=data/rbc.names
backup=backup/
eval=coco
再在data文件下新建rbc.names,配置内容如下:
RBC

修改cfg
我们需要将cfg下的yolov3-tiny.cfg文件进行修改,修改内容如下:
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=2
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 8
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18 #3*(class + 4 + 1)
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
需要将filters=18 #3*(class + 4 + 1)这一行改为filters=18,否则会报如下的错误:

接着,获取网络参数yolov3-tiny.weights,下载链接https://pjreddie.com/media/files/yolov3-tiny.weights,下载后导入weights文件夹下;同样还需要下载yolov3-tiny.conv.15,下载导入weights文件夹下,下载链接如下:https://pan.baidu.com/s/1nv1cErZeb6s0A5UOhOmZcA
提取码:t7vp
训练
在当前项目文件下使用Terminal,可以使用pycharm中的Terminal,也可以使用liunx系统的Terminal,输入如下命令
说明:epoches 10 不是固定的,大家可以根据实际训练情况自行修改
python train.py --data-cfg data/rbc.data --cfg cfg/yolov3-tiny.cfg --epochs 10

训练之后会得到模型:

预测
同样在Terminal下输入以下命令:
python detect.py --data-cfg data/rbc.data --cfg cfg/yolov3-tiny.cfg --weights weights/best.pt

解决一些小bug:
关于出现如下的情况

解决方法:
这个问题是由于本项目下有一个utils的文件目录,但是呢python本身就有一个utils;通常情况下我们是用import utils的方法导入的。解决这个问题我们只需将本项目的utils改一个名字即可,笔者是改为project的,同样也需要将相关文件进行修改,修改如下:


说明:我们需要将train.py和test.py等文件下的所有的utils全修改为project
有问题欢迎添加qq:1017190168讨论,进步
完整项目源码:
链接:https://pan.baidu.com/s/1dBaDP0ImTrAADg_KvB-0eQ
Pytorch实现YOLOv3训练自己的数据集的更多相关文章
- Win10中用yolov3训练自己的数据集全过程(VS、CUDA、CUDNN、OpenCV配置,训练和测试)
在Windows系统的Linux系统中用yolo训练自己的数据集的配置差异很大,今天总结在win10中配置yolo并进行训练和测试的全过程. 提纲: 1.下载适用于Windows的darknet 2. ...
- pytorch版yolov3训练自己数据集
目录 1. 环境搭建 2. 数据集构建 3. 训练模型 4. 测试模型 5. 评估模型 6. 可视化 7. 高级进阶-网络结构更改 1. 环境搭建 将github库download下来. git cl ...
- 第十一节,利用yolov3训练自己的数据集
1.环境配置 tensorflow1.12.0 Opencv3.4.2 keras pycharm 2.配置yolov3 下载yolov3代码:https://github.com/qqwweee/k ...
- Win7+keras+tensorflow使用YOLO-v3训练自己的数据集
一.下载和测试模型 1. 下载YOLO-v3 git clone https://github.com/qqwweee/keras-yolo3.git 这是在Ubuntu里的命令,windows直接去 ...
- YoLov3训练自己的数据集
工具:labelimg.MobaXterm 1.标注自己的数据集.用labelimg进行标注,保存后会生成与所标注图片文件名相同的xml文件,如图.我们标注的是井盖和路边栏,名称分了NoManhole ...
- Ubuntu16.04中用yolov3训练自己的数据集
一.配置yolo v3 参考yolo v3官网https://pjreddie.com/darknet/yolo/ 下载darknet后进行编译: git clone https://github.c ...
- 如何使用yolov3训练自己的数据集
博客主要结构 1. 如何在ubuntu18.04上安装yolo 2 .如何配置yolov3 3 .如何制作自己的训练集测试集 4 .如何在自己的数据集上运行yolov3 1. 在ubuntu18.04 ...
- 目标检测-基于Pytorch实现Yolov3(1)- 搭建模型
原文地址:https://www.cnblogs.com/jacklu/p/9853599.html 本人前段时间在T厂做了目标检测的项目,对一些目标检测框架也有了一定理解.其中Yolov3速度非常快 ...
- 利用YOLOV3训练自己的数据
写在前面:YOLOV3只有修改了源码才需要重新make,而且make之前要先make clean. 一.准备数据 在/darknet/VOCdevkit1下建立文件夹VOC2007. voc2007文 ...
- Pytorch多GPU训练
Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batc ...
随机推荐
- PRACK消息
概述 PRACK消息是sip协议的扩展,在RFC3262中定义,标准的名称是sip协议中的可靠临时响应. 本文简单介绍标准中对PRACK消息流程的描述,以及fs配置PRACK的方式. 环境 cento ...
- 论文解读(WDGRL)《Wasserstein Distance Guided Representation Learning for Domain Adaptation》
Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ] 论文信息 论文标题:Wasserstein Distance Guided Representation Learning f ...
- DeferredResult异步处理spring mvc Demo
一.概述 spring mvc同步接口在请求处理过程中一直处于阻塞状态,而异步接口可以启用后台线程去处理耗时任务.简单来说适用场景: 1.高并发: 2.高IO耗时操作. 二.Demo Spring M ...
- IOS苹果应用IPA一键签名工具(苹果重签名,企业签名,Windows平台,时间控制)
苹果应用IPA一键签名工具可以在windows平台对苹果应用IPA文件重新签名,无需MAC苹果电脑和配置XCODE开发环境,便可以直接对IPA文件进行签名,同时支持修改BundleID, 不受描述文件 ...
- 每日一库:Prometheus
什么是 Prometheus Prometheus 是一个开源的系统监控和警报工具,最初由 SoundCloud 开发,并于 2012 年发布为开源项目.它是一个非常强大和灵活的工具,用于监控应用程序 ...
- LeetCode 周赛上分之旅 #45 精妙的 O(lgn) 扫描算法与树上 DP 问题
️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问. 学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越 ...
- Python 有趣的模块之pynupt——通过pynput控制鼠标和键盘
写在前面 Python中有许多有趣和强大的模块,其中一个非常有趣的模块就是pynupt.pynupt是基于pynput模块的一个封装,用于控制鼠标和键盘.它可以实现自动化操作和游戏外挂等功能. 本文将 ...
- strcpy()函数详解
strcpy()函数是C语言中的一个复制字符串的库函数,以下将详细解释说明一下: · 函数声明以及实现代码 char *strcpy(char *dst, const char *src);char ...
- C#学习笔记---异常捕获和变量
异常捕获 使用异常捕获可以捕获出现异常的代码块,防止因为异常抛出造成的程序卡死的情况发生. try{}catch{}finally{}结构 //异常捕获 try { string str=Consol ...
- 什么???CSS也能原子化!
1.什么是原子化 CSS? Atomic CSS is the approach to CSS architecture that favors small, single-purpose class ...