改造 Kubernetes 自定义调度器
Overview
Kubernetes 默认调度器在调度 Pod 时并不关心特殊资源例如磁盘、GPU 等,因此突发奇想来改造调度器,在翻阅官方调度器框架[1]、调度器配置[2]和参考大佬的文章[3]后,自己也来尝试改写一下。
环境配置
相关软件版本:
- Kubernetes 版本:v1.19.0
- Docker 版本:v26.1.2
- Prometheus 版本:v2.49
- Node Exporter 版本:v1.7.0
集群内有 1 个 master 和 3 个 node。
实验部分
项目总览
项目结构如下:
.
├── Dockerfile
├── deployment.yaml
├── go.mod
├── go.sum
├── main.go
├── pkg
│ ├── cpu
│ │ └── cputraffic.go
│ ├── disk
│ │ └── disktraffic.go
│ ├── diskspace
│ │ └── diskspacetraffic.go
│ ├── memory
│ │ └── memorytraffic.go
│ ├── network
│ │ └── networktraffic.go
│ └── prometheus.go
├── scheduler
├── scheduler.conf
└── scheduler.yaml
插件部分
下面以构建内存插件为例。
定义插件名称、变量和结构体
const MemoryPlugin = "MemoryTraffic"
var _ = framework.ScorePlugin(&MemoryTraffic{})
type MemoryTraffic struct {
prometheus *pkg.PrometheusHandle
handle framework.FrameworkHandle
}
下面来实现 framework.FrameworkHandle 的接口。
先定义插件初始化入口
func New(plArgs runtime.Object, h framework.FrameworkHandle) (framework.Plugin, error) {
args := &MemoryTrafficArgs{}
if err := fruntime.DecodeInto(plArgs, args); err != nil {
return nil, err
}
klog.Infof("[MemoryTraffic] args received. Device: %s; TimeRange: %d, Address: %s", args.DeviceName, args.TimeRange, args.IP)
return &MemoryTraffic{
handle: h,
prometheus: pkg.NewProme(args.IP, args.DeviceName, time.Minute*time.Duration(args.TimeRange)),
}, nil
}
实现 Score 接口,Score 进行初步打分
func (n *MemoryTraffic) Score(ctx context.Context, state *framework.CycleState, p *corev1.Pod, nodeName string) (int64, *framework.Status) {
nodeBandwidth, err := n.prometheus.MemoryGetGauge(nodeName)
if err != nil {
return 0, framework.NewStatus(framework.Error, fmt.Sprintf("error getting node bandwidth measure: %s", err))
}
bandWidth := int64(nodeBandwidth.Value)
klog.Infof("[MemoryTraffic] node '%s' bandwidth: %v", nodeName, bandWidth)
return bandWidth, nil
}
实现 NormalizeScore,对上一步 Score 的打分进行修正
func (n *MemoryTraffic) NormalizeScore(ctx context.Context, state *framework.CycleState, pod *corev1.Pod, scores framework.NodeScoreList) *framework.Status {
var higherScore int64
for _, node := range scores {
if higherScore < node.Score {
higherScore = node.Score
}
}
// 计算公式为,满分 - (当前内存使用 / 总内存 * 100)
// 公式的计算结果为,内存使用率越大的节点,分数越低
for i, node := range scores {
scores[i].Score = node.Score * 100 / higherScore
klog.Infof("[MemoryTraffic] Nodes final score: %v", scores[i].Score)
}
klog.Infof("[MemoryTraffic] Nodes final score: %v", scores)
return nil
}
配置插件名称和返回 ScoreExtension
func (n *MemoryTraffic) Name() string {
return MemoryPlugin
}
// 如果返回framework.ScoreExtensions 就需要实现framework.ScoreExtensions
func (n *MemoryTraffic) ScoreExtensions() framework.ScoreExtensions {
return n
}
Prometheus 部分
首先来编写查询内存可用率的 PromQL
const memoryMeasureQueryTemplate = ` (avg_over_time(node_memory_MemAvailable_bytes[30m]) / avg_over_time(node_memory_MemTotal_bytes[30m])) * 100 * on(instance) group_left(nodename) (node_uname_info{nodename="%s"})`
然后来声明 PrometheusHandle
type PrometheusHandle struct {
deviceName string
timeRange time.Duration
ip string
client v1.API
}
另外在插件部分也要声明查询 Prometheus 的参数结构体
type MemoryTrafficArgs struct {
IP string `json:"ip"`
DeviceName string `json:"deviceName"`
TimeRange int `json:"timeRange"`
}
编写初始化 Prometheus 插件入口
func NewProme(ip, deviceName string, timeRace time.Duration) *PrometheusHandle {
client, err := api.NewClient(api.Config{Address: ip})
if err != nil {
klog.Fatalf("[Prometheus Plugin] FatalError creating prometheus client: %s", err.Error())
}
return &PrometheusHandle{
deviceName: deviceName,
ip: ip,
timeRange: timeRace,
client: v1.NewAPI(client),
}
}
编写通用查询接口,可供其他类型资源查询
func (p *PrometheusHandle) query(promQL string) (model.Value, error) {
results, warnings, err := p.client.Query(context.Background(), promQL, time.Now())
if len(warnings) > 0 {
klog.Warningf("[Prometheus Query Plugin] Warnings: %v\n", warnings)
}
return results, err
}
获取内存可用率接口
func (p *PrometheusHandle) MemoryGetGauge(node string) (*model.Sample, error) {
value, err := p.query(fmt.Sprintf(memoryMeasureQueryTemplate, node))
fmt.Println(fmt.Sprintf(memoryMeasureQueryTemplate, node))
if err != nil {
return nil, fmt.Errorf("[MemoryTraffic Plugin] Error querying prometheus: %w", err)
}
nodeMeasure := value.(model.Vector)
if len(nodeMeasure) != 1 {
return nil, fmt.Errorf("[MemoryTraffic Plugin] Invalid response, expected 1 value, got %d", len(nodeMeasure))
}
return nodeMeasure[0], nil
}
然后在程序入口里启用插件并执行
func main() {
rand.Seed(time.Now().UnixNano())
command := app.NewSchedulerCommand(
app.WithPlugin(network.NetworkPlugin, network.New),
app.WithPlugin(disk.DiskPlugin, disk.New),
app.WithPlugin(diskspace.DiskSpacePlugin, diskspace.New),
app.WithPlugin(cpu.CPUPlugin, cpu.New),
app.WithPlugin(memory.MemoryPlugin, memory.New),
)
// 对于外部注册一个plugin
// command := app.NewSchedulerCommand(
// app.WithPlugin("example-plugin1", ExamplePlugin1.New))
if err := command.Execute(); err != nil {
fmt.Fprintf(os.Stderr, "%v\n", err)
os.Exit(1)
}
}
配置部分
为方便观察,这里使用二进制方式运行,准备运行时的配置文件
apiVersion: kubescheduler.config.k8s.io/v1beta1
kind: KubeSchedulerConfiguration
clientConnection:
kubeconfig: /etc/kubernetes/scheduler.conf
profiles:
- schedulerName: custom-scheduler
plugins:
score:
enabled:
- name: "CPUTraffic"
weight: 3
- name: "MemoryTraffic"
weight: 4
- name: "DiskSpaceTraffic"
weight: 3
- name: "NetworkTraffic"
weight: 2
disabled:
- name: "*"
pluginConfig:
- name: "NetworkTraffic"
args:
ip: "http://172.19.32.140:9090"
deviceName: "eth0"
timeRange: 60
- name: "CPUTraffic"
args:
ip: "http://172.19.32.140:9090"
deviceName: "eth0"
timeRange: 0
- name: "MemoryTraffic"
args:
ip: "http://172.19.32.140:9090"
deviceName: "eth0"
timeRange: 0
- name: "DiskSpaceTraffic"
args:
ip: "http://172.19.32.140:9090"
deviceName: "eth0"
timeRange: 0
kubeconfig 处为 master 节点的 scheduler.conf,以实际路径为准,内包含集群的证书哈希,ip 为部署 Prometheus 节点的 ip,端口为 Promenade 配置中对外暴露的端口。
将二进制文件和 scheduler.yaml 放至 master 同一目录下运行:
./scheduler --logtostderr=true \
--address=127.0.0.1 \
--v=6 \
--config=`pwd`/scheduler.yaml \
--kubeconfig="/etc/kubernetes/scheduler.conf" \
验证结果
准备一个要部署的 Pod,使用指定的调度器名称
apiVersion: apps/v1
kind: Deployment
metadata:
name: gin
namespace: default
labels:
app: gin
spec:
replicas: 2
selector:
matchLabels:
app: gin
template:
metadata:
labels:
app: gin
spec:
schedulerName: my-custom-scheduler # 使用自定义调度器
containers:
- name: gin
image: jaydenchang/k8s_test:latest
imagePullPolicy: Always
command: ["./app"]
ports:
- containerPort: 9999
protocol: TCP
最后的可以查看日志,部分日志如下:
I0808 17:32:35.138289 27131 memorytraffic.go:83] [MemoryTraffic] node 'node1' bandwidth: %!s(int64=2680340)
I0808 17:32:35.138763 27131 memorytraffic.go:70] [MemoryTraffic] Nodes final score: [{node1 2680340} {node2 0}]
I0808 17:32:35.138851 27131 memorytraffic.go:70] [MemoryTraffic] Nodes final score: [{node1 71} {node2 0}]
I0808 17:32:35.138911 27131 memorytraffic.go:73] [MemoryTraffic] Nodes final score: [{node1 71} {node2 0}]
I0808 17:32:35.139565 27131 default_binder.go:51] Attempting to bind default/go-deployment-66878c4885-b4b7k to node1
I0808 17:32:35.141114 27131 eventhandlers.go:225] add event for scheduled pod default/go-deployment-66878c4885-b4b7k
I0808 17:32:35.141714 27131 eventhandlers.go:205] delete event for unscheduled pod default/go-deployment-66878c4885-b4b7k
I0808 17:32:35.143504 27131 scheduler.go:609] "Successfully bound pod to node" pod="default/go-deployment-66878c4885-b4b7k" node="no
de1" evaluatedNodes=2 feasibleNodes=2
I0808 17:32:35.104540 27131 scheduler.go:609] "Successfully bound pod to node" pod="default/go-deployment-66878c4885-b4b7k" node="no
de1" evaluatedNodes=2 feasibleNodes=2
参考链接
改造 Kubernetes 自定义调度器的更多相关文章
- scrapy 基础组件专题(七):scrapy 调度器、调度器中间件、自定义调度器
一.调度器 配置 SCHEDULER = 'scrapy.core.scheduler.Scheduler' #表示scrapy包下core文件夹scheduler文件Scheduler类# 可以通过 ...
- 第十四章 kubernetes 核心技术-调度器
一.概述 一个容器平台的主要功能就是为容器分配运行时所需要的计算,存储和网络资源.容器调 度系统负责选择在最合适的主机上启动容器,并且将它们关联起来.它必须能够自动的处 理容器故障并且能够在更多的主机 ...
- TKE 用户故事 | 作业帮 Kubernetes 原生调度器优化实践
作者 吕亚霖,2019年加入作业帮,作业帮架构研发负责人,在作业帮期间主导了云原生架构演进.推动实施容器化改造.服务治理.GO微服务框架.DevOps的落地实践. 简介 调度系统的本质是为计算服务/任 ...
- Kubernetes增强型调度器Volcano算法分析
[摘要] Volcano 是基于 Kubernetes 的批处理系统,源自于华为云开源出来的.Volcano 方便 AI.大数据.基因.渲染等诸多行业通用计算框架接入,提供高性能任务调度引擎,高性能异 ...
- Kubernetes增强型调度器Volcano算法分析【华为云技术分享】
[摘要] Volcano 是基于 Kubernetes 的批处理系统,源自于华为云开源出来的.Volcano 方便 AI.大数据.基因.渲染等诸多行业通用计算框架接入,提供高性能任务调度引擎,高性能异 ...
- Kubernetes之调度器和调度过程
scheduler 当Scheduler通过API server 的watch接口监听到新建Pod副本的信息后,它会检查所有符合该Pod要求的Node列表,开始执行Pod调度逻辑.调度成功后将Pod绑 ...
- Kubernetes集群调度器原理剖析及思考
简述 云环境或者计算仓库级别(将整个数据中心当做单个计算池)的集群管理系统通常会定义出工作负载的规范,并使用调度器将工作负载放置到集群恰当的位置.好的调度器可以让集群的工作处理更高效,同时提高资源利用 ...
- 第十五章 Kubernetes调度器
一.简介 Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上.听起来非常简单,但有很多要考虑的问题: ① 公平:如何保证每个节点都能被分配资源 ② ...
- Kubernetes K8S之调度器kube-scheduler详解
Kubernetes K8S之调度器kube-scheduler概述与详解 kube-scheduler调度概述 在 Kubernetes 中,调度是指将 Pod 放置到合适的 Node 节点上,然后 ...
- 巧用Prometheus来扩展kubernetes调度器
Overview 本文将深入讲解 如何扩展 Kubernetes scheduler 中各个扩展点如何使用,与扩展scheduler的原理,这些是作为扩展 scheduler 的所需的知识点.最后会完 ...
随机推荐
- 如何在现实场景中随心放置AR虚拟对象?
随着AR的发展和电子设备的普及,人们在生活中使用AR技术的门槛降低,比如对于不方便测量的物体使用AR测量,方便又准确:遇到陌生的路段使用AR导航,清楚又便捷:网购时拿不准的物品使用AR购物,体验更逼真 ...
- 高并发报错too many clients already或无法创建线程
高并发报错 too many clients already 或无法创建线程 本文出处:https://www.modb.pro/db/432236 问题现象 高并发执行 SQL,报错"so ...
- HarmonyOS如何高效上架原子化服务?这个平台帮你搞定!
以往HarmonyOS应用和原子化服务都是在AGC(App Gallery Connect)上架,二者的上架流程一样.但应用的形态更加复杂庞大,上架时有很多必填字段,审核标准也相对复杂,而原子化服务的 ...
- 敲重点!HarmonyOS这些更新将会影响原子化服务上架
原文:https://mp.weixin.qq.com/s/t-MaHqYiJ3z-QxaIsgWNPA,点击链接查看更多技术内容. 一.引言 随着原子化服务生态的发展,我们的业务诉求也在不断地变化, ...
- HDC 2022重磅首发《鸿蒙生态应用开发白皮书》,附全文
原文:https://mp.weixin.qq.com/s/sEicsV_82770nAlcSCzwIw,点击链接查看更多技术内容. 11月4-6日,华为开发者大会2022(HDC)在东莞松山湖举 ...
- 史上最全的中高级JAVA工程师-面试题汇总
史上最全的中高级JAVA工程师-面试题汇总 置顶 2019-10-15 18:58:32 Jeff.Smile 阅读数 34460更多 分类专栏: # 随笔 版权声明:本文为博主原创文章,遵循CC 4 ...
- Spring-Cloud 组件之 Spring Cloud Eureka:服务注册与发现
Spring Cloud Eureka:服务注册与发现 SpringCloud学习教程 SpringCloud Spring Cloud Eureka是Spring Cloud Netflix 子项目 ...
- Java+HTML预习笔记_20140610
1.HTML <img> 标签 HTML <img> 标签 实例 在下面的例子中,我们在页面中插入一幅 W3School 的工程师在上海鲜花港拍摄的郁金香照片: <img ...
- redis 简单整理——bitmaps[十二]
前言 简单介绍一下bitmaps这个东西. 正文 我们都知道bitmaps 翻译过来就是二进制. 那么二进制可以存一些什么呢? 图片.视频,还可也存些什么呢? 现代计算机用二进制(位)作为信息的基础单 ...
- super()和super(props)
一.ES6类 在ES6中,通过extends关键字实现类的继承,方式如下: class sup { constructor(name) { this.name = name } printName() ...