Series 结构,也称 Series 序列,是 Pandas 常用的数据结构之一,它是一种类似于一维数组的结构,由一组数据值(value)和一组标签组成,其中标签与数据值之间是一一对应的关系。

Series 可以保存任何数据类型,比如整数、字符串、浮点数、Python 对象等,它的标签默认为整数,从 0 开始依次递增。Series 的结构图,如下所示:

通过标签我们可以更加直观地查看数据所在的索引位置。

创建Series对象

Pandas 使用 Series() 函数来创建 Series 对象,通过这个对象可以调用相应的方法和属性,从而达到处理数据的目的:

import pandas as pd
s= pd.Series( data, index, dtype, copy)

参数说明如下所示:

参数名称 描述
data 输入的数据,可以是列表、常量、ndarray 数组等。
index 索引值必须是惟一的,如果没有传递索引,则默认为 np.arrange(n)。
dtype dtype表示数据类型,如果没有提供,则会自动判断得出。
copy 表示对 data 进行拷贝,默认为 False。

我们也可以使用数组、字典、标量值或者 Python 对象来创建 Series 对象。下面展示了创建 Series 对象的不同方法:

1) 创建一个空Series对象

使用以下方法可以创建一个空的 Series 对象,如下所示:

import pandas as pd
#输出数据为空
s = pd.Series()
print(s)

输出结果如下:

Series([], dtype: float64)

2) ndarray创建Series对象

ndarray 是 NumPy 中的数组类型,当 data 是 ndarry 时,传递的索引必须具有与数组相同的长度。假如没有给 index 参数传参,在默认情况下,索引值将使用是 range(n) 生成,其中 n 代表数组长度,如下所示:

[0,1,2,3…. range(len(array))-1]

使用默认索引,创建 Series 序列对象:

import pandas as pd
import numpy as np
data = np.array(['a','b','c','d'])
s = pd.Series(data)
print (s)

输出结果如下:

0   a
1 b
2 c
3 d
dtype: object

上述示例中没有传递任何索引,所以索引默认从 0 开始分配 ,其索引范围为 0 到len(data)-1,即 0 到 3。这种设置方式被称为“隐式索引”。

除了上述方法外,你也可以使用“显式索引”的方法定义索引标签,示例如下:

import pandas as pd
import numpy as np
data = np.array(['a','b','c','d'])#自定义索引标签(即显示索引)
s = pd.Series(data,index=[100,101,102,103])
print(s)

输出结果:

100  a
101 b
102 c
103 d
dtype: object

3) dict创建Series对象

您可以把 dict 作为输入数据。如果没有传入索引时会按照字典的键来构造索引;反之,当传递了索引时需要将索引标签与字典中的值一一对应。

下面两组示例分别对上述两种情况做了演示。

示例1,没有传递索引时:

import pandas as pd
import numpy as np
data = {'a' : 0., 'b' : 1., 'c' : 2.}
s = pd.Series(data)
print(s)

输出结果:

a 0.0
b 1.0
c 2.0
dtype: float64

示例 2,为index参数传递索引时:

import pandas as pd
import numpy as np
data = {'a' : 0., 'b' : 1., 'c' : 2.}
s = pd.Series(data,index=['b','c','d','a'])
print(s)

输出结果:

b 1.0
c 2.0
d NaN
a 0.0
dtype: float64

当传递的索引值无法找到与其对应的值时,使用 NaN(非数字)填充。

4) 标量创建Series对象

如果 data 是标量值,则必须提供索引,示例如下:

import pandas as pd
import numpy as np
s = pd.Series(5, index=[0, 1, 2, 3])
print(s)

输出如下:

0  5
1 5
2 5
3 5
dtype: int64

标量值按照 index 的数量进行重复,并与其一一对应。

访问Series数据

上述讲解了创建 Series 对象的多种方式,那么我们应该如何访问 Series 序列中元素呢?分为两种方式,一种是位置索引访问;另一种是索引标签访问。

1) 位置索引访问

这种访问方式与 ndarray 和 list 相同,使用元素自身的下标进行访问。我们知道数组的索引计数从 0 开始,这表示第一个元素存储在第 0 个索引位置上,以此类推,就可以获得 Series 序列中的每个元素。下面看一组简单的示例:

import pandas as pd
s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print(s[0]) #位置下标
print(s['a']) #标签下标

输出结果:

1
1

通过切片的方式访问 Series 序列中的数据,示例如下:

import pandas as pd
s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print(s[:3])

输出结果:

a  1
b 2
c 3
dtype: int64

如果想要获取最后三个元素,也可以使用下面的方式:

import pandas as pd
s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print(s[-3:])

输出结果:

c  3
d 4
e 5
dtype: int64

2) 索引标签访问

Series 类似于固定大小的 dict,把 index 中的索引标签当做 key,而把 Series 序列中的元素值当做 value,然后通过 index 索引标签来访问或者修改元素值。

示例1,使用索标签访问单个元素值:

import pandas as pd
s = pd.Series([6,7,8,9,10],index = ['a','b','c','d','e'])
print(s['a'])

输出结果:

6

示例 2,使用索引标签访问多个元素值

import pandas as pd
s = pd.Series([6,7,8,9,10],index = ['a','b','c','d','e'])
print(s[['a','c','d']])

输出结果:

a    6
c 8
d 9
dtype: int64

示例3,如果使用了 index 中不包含的标签,则会触发异常:

import pandas as pd
s = pd.Series([6,7,8,9,10],index = ['a','b','c','d','e'])#不包含f值
print(s['f'])

输出结果:

......
KeyError: 'f'

Series常用属性

下面我们介绍 Series 的常用属性和方法。在下表列出了 Series 对象的常用属性。

名称 属性
axes 以列表的形式返回所有行索引标签。
dtype 返回对象的数据类型。
empty 返回一个空的 Series 对象。
ndim 返回输入数据的维数。
size 返回输入数据的元素数量。
values 以 ndarray 的形式返回 Series 对象。
index 返回一个RangeIndex对象,用来描述索引的取值范围。

现在创建一个 Series 对象,并演示如何使用上述表格中的属性。如下所示:

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print(s)

输出结果:

0    0.898097
1 0.730210
2 2.307401
3 -1.723065
4 0.346728
dtype: float64

上述示例的行索引标签是 [0,1,2,3,4]。

1) axes

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print("The axes are:")
print(s.axes)

输出结果

The axes are:
[RangeIndex(start=0, stop=5, step=1)]

2) dtype

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print("The dtype is:")
print(s.dtype)

输出结果:

The dtype is:
float64

3) empty

返回一个布尔值,用于判断数据对象是否为空。示例如下:

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print("是否为空对象?")
print(s.empty)

输出结果:

是否为空对象?
False

4) ndim

查看序列的维数。根据定义,Series 是一维数据结构,因此它始终返回 1。

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print(s)
print(s.ndim)

输出结果:

0    0.311485
1 1.748860
2 -0.022721
3 -0.129223
4 -0.489824
dtype: float64
1

5) size

返回 Series 对象的大小(长度)。

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(3))
print(s)
print(s.size)#series的长度大小

输出结果:

0   -1.866261
1 -0.636726
2 0.586037
dtype: float64
3

6) values

以数组的形式返回 Series 对象中的数据。

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(6))
print(s)
print("输出series中数据")
print(s.values)

输出结果:

0   -0.502100
1 0.696194
2 -0.982063
3 0.416430
4 -1.384514
5 0.444303
dtype: float64
输出series中数据
[-0.50210028 0.69619407 -0.98206327 0.41642976 -1.38451433 0.44430257]

7) index

该属性用来查看 Series 中索引的取值范围。示例如下:

#显示索引
import pandas as pd
s = pd.Series([1,2,5,8],index=['a','b','c','d'])
print(s.index)
#隐式索引
s1 = pd.Series([1,2,5,8])
print(s1.index)

输出结果:

显示索引:
Index(['a', 'b', 'c', 'd'], dtype='object')
隐式索引:
RangeIndex(start=0, stop=4, step=1)

Series常用方法

1) head()&tail()查看数据

如果想要查看 Series 的某一部分数据,可以使用 head() 或者 tail() 方法。其中 head() 返回前 n 行数据,默认显示前 5 行数据。示例如下:

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print ("The original series is:")
print (s)
print (s.head(3))#返回前三行数据

输出结果:

原系列输出结果:
0 1.249679
1 0.636487
2 -0.987621
3 0.999613
4 1.607751
head(3)输出:
dtype: float64
0 1.249679
1 0.636487
2 -0.987621
dtype: float64

tail() 返回的是后 n 行数据,默认为后 5 行。示例如下:

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(4))
#原series
print(s)
#输出后两行数据
print (s.tail(2))

输出结果:

原Series输出:
0 0.053340
1 2.165836
2 -0.719175
3 -0.035178
输出后两行数据:
dtype: float64
2 -0.719175
3 -0.035178
dtype: float64

2) isnull()&nonull()检测缺失值

isnull() 和 nonull() 用于检测 Series 中的缺失值。所谓缺失值,顾名思义就是值不存在、丢失、缺少。

  • isnull():如果为值不存在或者缺失,则返回 True。
  • notnull():如果值不存在或者缺失,则返回 False。

其实不难理解,在实际的数据分析任物中,数据的收集往往要经历一个繁琐的过程。在这个过程中难免会因为一些不可抗力,或者人为因素导致数据丢失的现象。这时,我们可以使用相应的方法对缺失值进行处理,比如均值插值、数据补齐等方法。上述两个方法就是帮助我们检测是否存在缺失值。示例如下:

import pandas as pd
#None代表缺失数据
s=pd.Series([1,2,5,None])
print(pd.isnull(s)) #是空值返回True
print(pd.notnull(s)) #空值返回False

输出结果:

0    False
1 False
2 False
3 True
dtype: bool notnull():
0 True
1 True
2 True
3 False
dtype: bool

Series基础的更多相关文章

  1. Pandas-数据探索

    Pandas包对数据的常用探索功能,方便了解数据描述性属性. 目录 基础属性 shape indexs columns values dtype/dtypes 汇总和计算描述统计 count() va ...

  2. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  3. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  4. pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  5. pandas学习series和dataframe基础

    PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...

  6. pandas基础:Series与DataFrame操作

    pandas包 # 引入包 import pandas as pd import numpy as np import matplotlib.pyplot as plt Series Series 是 ...

  7. 01-pandas基础-Series与DataFrame

    一.Series: 1,介绍:Series是以中类似于一维数组的对象,由一维数组以及与之相关的标签组成 特点:索引在左边,值在右边.在创建时,若我们未给数据指定索引,Series会自动创建一个0到N- ...

  8. WCF Basics - FAQs Series【WCF基础----问答系列教程】

    WCF学习系列一[WCF Interview Questions-Part 1 翻译系列] WCF学习系列二---[WCF Interview Questions – Part 2 翻译系列] WCF ...

  9. 利用Python进行数据分析 基础系列随笔汇总

    一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ...

  10. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

随机推荐

  1. KVM 核心功能:CPU 虚拟化

    1 vCPU 简介 CPU 负责计算机程序指令的执行.QEMU-KVM 提供对虚拟机 CPU 的模拟,对于虚拟机来说,其拥有的 CPU 是真实的, 和物理 CPU 没有区别. 实际上,虚拟机在 hos ...

  2. maven 工程pom依赖优化及常用命令

    本文为博主原创,转载请注明出处: 1. mvn dependency:list ---- 列出项目的所有jar包 mvn dependency:list -Dverbose 该命令可以列出项目依赖的所 ...

  3. maven总结一: 常用命令

    本文为博主原创,未经允许不得转载: maven常用命令: 1. mvn clean  maven清理 2. mvn compile  maven 编译 3. mvn package maven 打包 ...

  4. 基于python+django的电影搜索网站-搜索引擎系统设计与实现

    该项目是基于python的web类库django开发的一套web网站,给师弟做的课程设计. 本人的研究方向是一项关于搜索的研究项目.在该项目中,笔者开发了一个简单版的搜索网站,实现了对数据库数据的检索 ...

  5. 星索称重/生产管理软件 联机版V1.0

    星索称重/生产管理软件 联机版V1.0   一.特点 1.支持多用户.多组织管理,灵活控制用户权限. 2.支持地磅秤.智能电子秤.轨道秤等多款称重设备. 3.支持三联单/热敏纸等多种打印模板. 二.系 ...

  6. 2023第十四届极客大挑战 — WEB WP

    说明:由于是从docx直接导入,因此鉴于docx的识别,文章有些图片里面有红色下划线,但不影响! 属实懒了!直接导入了...哈哈.凑合看吧!实在太多了.... EzHttp Post传参 查看源码 访 ...

  7. [转帖]Linux下非oracle用户如何使用系统认证方式登陆数据

    https://www.cnblogs.com/kerrycode/p/17772866.html Linux系统中,DBA一般使用oracle用户登陆/访问Linux操作系统,然后使用sqlplus ...

  8. TiDB恢复部分表的方式方法

    TiDB恢复部分表的方式方法 背景 今天同事告知误删了部分表. 因为是UAT准生产的环境, 所以仅有每天晚上11点的备份处理. 同时告知 昨天的数据也可以. 得到认可后进行了 TiDB的单表备份恢复. ...

  9. [转帖]Python学习之十七_django的入门

    Python学习之十七_django的入门 前言 Python学习了一周, 慢慢总结摸索. 自己还是有多不会的地方. 感慨这些年浪费的时间. 所有的时间都是选择大于努力. 努力最多感动自己. 生活是需 ...

  10. [转帖]FT-2000+/64 - Phytium

      https://en.wikichip.org/wiki/phytium/feiteng/ft-2000%2B-64 Edit Values FT-2000+/64 General Info De ...