代码随想录算法训练营

代码随想录算法训练营Day21 二叉树| 530.二叉搜索树的最小绝对差 501.二叉搜索树中的众数 236. 二叉树的最近公共祖先

530.二叉搜索树的最小绝对差

题目链接:530.二叉搜索树的最小绝对差

给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。

总体思路

题目中要求在二叉搜索树上任意两节点的差的绝对值的最小值。

注意是二叉搜索树,二叉搜索树可是有序的。

遇到在二叉搜索树上求什么最值啊,差值之类的,就把它想成在一个有序数组上求最值,求差值,这样就简单多了。

递归

那么二叉搜索树采用中序遍历,其实就是一个有序数组。

在一个有序数组上求两个数最小差值,这是不是就是一道送分题了。

最直观的想法,就是把二叉搜索树转换成有序数组,然后遍历一遍数组,就统计出来最小差值了。

代码如下:

class Solution {
private:
vector<int> vec;
void traversal(TreeNode* root) {
if (root == NULL) return;
traversal(root->left);
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
traversal(root->right);
}
public:
int getMinimumDifference(TreeNode* root) {
vec.clear();
traversal(root);
if (vec.size() < 2) return 0;
int result = INT_MAX;
for (int i = 1; i < vec.size(); i++) { // 统计有序数组的最小差值
result = min(result, vec[i] - vec[i-1]);
}
return result;
}
};

需要用一个pre节点记录一下cur节点的前一个节点。

class Solution {
private:
int result = INT_MAX;
TreeNode* pre = NULL;
void traversal(TreeNode* cur) {
if (cur == NULL) return;
traversal(cur->left); // 左
if (pre != NULL){ // 中
result = min(result, cur->val - pre->val);
}
pre = cur; // 记录前一个
traversal(cur->right); // 右
}
public:
int getMinimumDifference(TreeNode* root) {
traversal(root);
return result;
}
};

501.二叉搜索树中的众数

题目链接501.二叉搜索树中的众数

给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。

假定 BST 有如下定义:

  • 结点左子树中所含结点的值小于等于当前结点的值
  • 结点右子树中所含结点的值大于等于当前结点的值
  • 左子树和右子树都是二叉搜索树

    例如:

    给定 BST [1,null,2,2],返回[2].

总体思路

如果不是二叉搜索树

如果不是二叉搜索树,最直观的方法一定是把这个树都遍历了,用map统计频率,把频率排个序,最后取前面高频的元素的集合。

具体步骤如下:

  1. 这个树都遍历了,用map统计频率

    至于用前中后序哪种遍历也不重要,因为就是要全遍历一遍,怎么个遍历法都行,层序遍历都没毛病!

    这里采用前序遍历,代码如下:
// map<int, int> key:元素,value:出现频率
void searchBST(TreeNode* cur, unordered_map<int, int>& map) { // 前序遍历
if (cur == NULL) return ;
map[cur->val]++; // 统计元素频率
searchBST(cur->left, map);
searchBST(cur->right, map);
return ;
}
  1. 把统计的出来的出现频率(即map中的value)排个序

    有的同学可能可以想直接对map中的value排序,还真做不到,C++中如果使用std::map或者std::multimap可以对key排序,但不能对value排序。

    所以要把map转化数组即vector,再进行排序,当然vector里面放的也是pair<int, int>类型的数据,第一个int为元素,第二个int为出现频率。

    代码如下:
bool static cmp (const pair<int, int>& a, const pair<int, int>& b) {
return a.second > b.second; // 按照频率从大到小排序
} vector<pair<int, int>> vec(map.begin(), map.end());
sort(vec.begin(), vec.end(), cmp); // 给频率排个序
  1. 取前面高频的元素

    此时数组vector中已经是存放着按照频率排好序的pair,那么把前面高频的元素取出来就可以了。

    代码如下:
result.push_back(vec[0].first);
for (int i = 1; i < vec.size(); i++) {
// 取最高的放到result数组中
if (vec[i].second == vec[0].second) result.push_back(vec[i].first);
else break;
}
return result;

整体C++代码如下:

class Solution {
private: void searchBST(TreeNode* cur, unordered_map<int, int>& map) { // 前序遍历
if (cur == NULL) return ;
map[cur->val]++; // 统计元素频率
searchBST(cur->left, map);
searchBST(cur->right, map);
return ;
}
bool static cmp (const pair<int, int>& a, const pair<int, int>& b) {
return a.second > b.second;
}
public:
vector<int> findMode(TreeNode* root) {
unordered_map<int, int> map; // key:元素,value:出现频率
vector<int> result;
if (root == NULL) return result;
searchBST(root, map);
vector<pair<int, int>> vec(map.begin(), map.end());
sort(vec.begin(), vec.end(), cmp); // 给频率排个序
result.push_back(vec[0].first);
for (int i = 1; i < vec.size(); i++) {
// 取最高的放到result数组中
if (vec[i].second == vec[0].second) result.push_back(vec[i].first);
else break;
}
return result;
}
};

所以如果本题没有说是二叉搜索树的话,那么就按照上面的思路写!

如果是二叉搜索树



中序遍历代码如下:

void searchBST(TreeNode* cur) {
if (cur == NULL) return ;
searchBST(cur->left); // 左
(处理节点) // 中
searchBST(cur->right); // 右
return ;
}

弄一个指针指向前一个节点,这样每次cur(当前节点)才能和pre(前一个节点)作比较。

二且初始化的时候pre = NULL,这样当pre为NULL时候,我们就知道这是比较的第一个元素。

代码如下:

if (pre == NULL) { // 第一个节点
count = 1; // 频率为1
} else if (pre->val == cur->val) { // 与前一个节点数值相同
count++;
} else { // 与前一个节点数值不同
count = 1;
}
pre = cur; // 更新上一个节点

此时又有问题了,因为要求最大频率的元素集合(注意是集合,不是一个元素,可以有多个众数),如果是数组上大家一般怎么办?

应该是先遍历一遍数组,找出最大频率(maxCount),然后再重新遍历一遍数组把出现频率为maxCount的元素放进集合。(因为众数有多个)

这种方式遍历了两遍数组。

那么我们遍历两遍二叉搜索树,把众数集合算出来也是可以的。

但这里其实只需要遍历一次就可以找到所有的众数。

那么如何只遍历一遍呢?

如果 频率count 等于 maxCount(最大频率),当然要把这个元素加入到结果集中(以下代码为result数组),代码如下:

if (count == maxCount) { // 如果和最大值相同,放进result中
result.push_back(cur->val);
}

是不是感觉这里有问题,result怎么能轻易就把元素放进去了呢,万一,这个maxCount此时还不是真正最大频率呢。

所以下面要做如下操作:

频率count 大于 maxCount的时候,不仅要更新maxCount,而且要清空结果集(以下代码为result数组),因为结果集之前的元素都失效了。

if (count > maxCount) { // 如果计数大于最大值
maxCount = count; // 更新最大频率
result.clear(); // 很关键的一步,不要忘记清空result,之前result里的元素都失效了
result.push_back(cur->val);
}

关键代码都讲完了,完整代码如下:(只需要遍历一遍二叉搜索树,就求出了众数的集合

class Solution {
private:
int maxCount = 0; // 最大频率
int count = 0; // 统计频率
TreeNode* pre = NULL;
vector<int> result;
void searchBST(TreeNode* cur) {
if (cur == NULL) return ; searchBST(cur->left); // 左
// 中
if (pre == NULL) { // 第一个节点
count = 1;
} else if (pre->val == cur->val) { // 与前一个节点数值相同
count++;
} else { // 与前一个节点数值不同
count = 1;
}
pre = cur; // 更新上一个节点 if (count == maxCount) { // 如果和最大值相同,放进result中
result.push_back(cur->val);
} if (count > maxCount) { // 如果计数大于最大值频率
maxCount = count; // 更新最大频率
result.clear(); // 很关键的一步,不要忘记清空result,之前result里的元素都失效了
result.push_back(cur->val);
} searchBST(cur->right); // 右
return ;
} public:
vector<int> findMode(TreeNode* root) {
count = 0;
maxCount = 0;
TreeNode* pre = NULL; // 记录前一个节点
result.clear(); searchBST(root);
return result;
}
};

530.二叉搜索树的最小绝对差

题目链接:530.二叉搜索树的最小绝对差

给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。

总体思路

那么二叉搜索树采用中序遍历,其实就是一个有序数组。

在一个有序数组上求两个数最小差值,这是不是就是一道送分题了。

最直观的想法,就是把二叉搜索树转换成有序数组,然后遍历一遍数组,就统计出来最小差值了。

代码如下:

class Solution {
private:
vector<int> vec;
void traversal(TreeNode* root) {
if (root == NULL) return;
traversal(root->left);
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
traversal(root->right);
}
public:
int getMinimumDifference(TreeNode* root) {
vec.clear();
traversal(root);
if (vec.size() < 2) return 0;
int result = INT_MAX;
for (int i = 1; i < vec.size(); i++) { // 统计有序数组的最小差值
result = min(result, vec[i] - vec[i-1]);
}
return result;
}
};

以上代码是把二叉搜索树转化为有序数组了,其实在二叉搜素树中序遍历的过程中,我们就可以直接计算了。

需要用一个pre节点记录一下cur节点的前一个节点。



代码如下:

class Solution {
private:
int result = INT_MAX;
TreeNode* pre = NULL;
void traversal(TreeNode* cur) {
if (cur == NULL) return;
traversal(cur->left); // 左
if (pre != NULL){ // 中
result = min(result, cur->val - pre->val);
}
pre = cur; // 记录前一个
traversal(cur->right); // 右
}
public:
int getMinimumDifference(TreeNode* root) {
traversal(root);
return result;
}
};

代码随想录算法训练营Day21 二叉树的更多相关文章

  1. 代码随想录算法训练营day21 | leetcode ● 530.二叉搜索树的最小绝对差 ● 501.二叉搜索树中的众数 ● ***236. 二叉树的最近公共祖先

    LeetCode 530.二叉搜索树的最小绝对差 分析1.0 二叉搜索树,中序遍历形成一个升序数组,节点差最小值一定在中序遍历两个相邻节点产生 ✡✡✡ 即 双指针思想在树遍历中的应用 class So ...

  2. 代码随想录算法训练营day01 | leetcode 704/27

    前言   考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...

  3. 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

    LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...

  4. 代码随想录算法训练营day20 | leetcode ● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树

    LeetCode 654.最大二叉树 分析1.0 if(start == end) return节点索引 locateMaxNode(arr,start,end) new root = 最大索引对应节 ...

  5. 代码随想录算法训练营day18 | leetcode 513.找树左下角的值 ● 112. 路径总和 113.路径总和ii ● 106.从中序与后序遍历序列构造二叉树

    LeetCode 513.找树左下角的值 分析1.0 二叉树的 最底层 最左边 节点的值,层序遍历获取最后一层首个节点值,记录每一层的首个节点,当没有下一层时,返回这个节点 class Solutio ...

  6. 代码随想录算法训练营day16 | leetcode ● 104.二叉树的最大深度 559.n叉树的最大深度 ● 111.二叉树的最小深度 ● 222.完全二叉树的节点个数

    基础知识 二叉树的多种遍历方式,每种遍历方式各有其特点 LeetCode 104.二叉树的最大深度 分析1.0 往下遍历深度++,往上回溯深度-- class Solution { int deep ...

  7. 代码随想录算法训练营day14 | leetcode 层序遍历 226.翻转二叉树 101.对称二叉树 2

    层序遍历 /** * 二叉树的层序遍历 */ class QueueTraverse { /** * 存放一层一层的数据 */ public List<List<Integer>&g ...

  8. 代码随想录算法训练营day13

    基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...

  9. 代码随想录算法训练营day02 | leetcode 977/209/59

    leetcode 977   分析1.0:   要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...

  10. 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点

    LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0  二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...

随机推荐

  1. 工良出品:包教会,Hadoop、Hive 搭建部署简易教程

    目录 导读 Hadoop.Hive 是什么 运行环境 Java 环境 Mysql 下载 Hadoop.Hive 和 驱动 安装 Hadoop core-site.xml hdfs-site.xml m ...

  2. 基于深度学习的农作物叶片病害检测系统(UI界面+YOLOv5+训练数据集)

    摘要:农作物叶片病害检测系统用于智能检测常见农作物叶片病害情况,自动化标注.记录和保存病害位置和类型,辅助作物病害防治以增加产值.本文详细介绍基于YOLOv5深度学习模型的农作物叶片病害检测系统,在介 ...

  3. 能让Java开发者提高效率的10个工具

    ​ Java受到全球百万计开发者的追捧,已经演变为一门出色的编程语言.最终,这门语言随着技术的变化,不断的被改善以迎合变化的市场需求. 无论你是否拥有一家科技公司,软件已经成为几乎每一个企业不可或缺的 ...

  4. Eclipse安装和配置环境教程(图文详解)

    前言 在上一篇文章中,壹哥给大家介绍了Notepad++这个更高级点的记事本,它进行Java开发相比windows自带的记事本要更方便一些.但是即便如此,用这种记事本进行Java开发效率依然很低.如果 ...

  5. 可靠消息最终一致性【本地消息表、RocketMQ 事务消息方案】

    更多内容,前往IT-BLOG 一.可靠消息最终一致性事务概述 可靠消息最终一致性方案是指当事务发起方执行完成本地事务后并发出一条消息,事务参与方(消息消费者)一定能够接收消息并处理事务成功,此方案强调 ...

  6. vulnhub靶场之HACKSUDO: 2 (HACKDUDO)

    准备: 攻击机:虚拟机kali.本机win10. 靶机:hacksudo: 2 (HackDudo),下载地址:https://download.vulnhub.com/hacksudo/hackdu ...

  7. C++ 测试框架 GoogleTest 初学者入门篇 乙

    *以下内容为本人的学习笔记,如需要转载,请声明原文链接微信公众号「ENG八戒」https://mp.weixin.qq.com/s/aFeiOGO-N9O7Ab_8KJ2wxw 开发者虽然主要负责工程 ...

  8. 方差分析1—单因素方差分析(R语言)

    方差分析是由英国著名统计学家:R.A.Fisher推导,也叫F检验,用于多个样本间均数的比较(分析类别变量.有序变量).当包含的因子是解释变量时,关注的重点通常会从预测转向组别差异的分析.方差分析是一 ...

  9. vue指令之事件指令

    目录 什么是事件指令 示例 什么是事件指令 事件指的是:点击事件,双击事件,划动事件,焦点事件... 语法 v-on:事件名='函数' # 注意:函数必须写在 methods配置项中 示例 # 点击按 ...

  10. Nvidia GPU池化-远程GPU

    1 背景 Nvidia GPU得益于在深度学习领域强大的计算能力,使其在数据中心常年处于绝对的统治地位.尽管借助GPU虚拟化实现多任务混布,提高了GPU的利用率,缓解了长尾效应,但是GPU利用率的绝对 ...