使用Matplotlib对分析结果可视化时,比较各类分析结果是常见的场景。
在这类场景之下,将多个分析结果绘制在一张图上,可以帮助用户方便地组合和分析多个数据集,提高数据可视化的效率和准确性。

本篇介绍Matplotlib绘制子图的常用方式和技巧。

1. 添加子图的方式

添加子图主要有两种方式,
一种是函数式风格:(也就是上一篇画布中介绍的方式)

import numpy as np

import matplotlib
import matplotlib.pyplot as plt %matplotlib inline x = np.array(range(0, 8)) fig = plt.figure(figsize=[6,4])
fig.add_subplot(211) # 2行1列的第一个
y = np.random.randint(1, 100, 8)
plt.plot(x, y) fig.add_subplot(212) # 2行1列的第二个
y = np.random.randint(1, 100, 8)
plt.plot(x, y)

另一种是面向对象风格:(使用 Axes 对象)

x = np.array(range(0, 8))

fig, ax = plt.subplots(1, 2)  # 设置子图1行2列
y = np.random.randint(1, 100, 8)
ax[0].plot(x, y) y = np.random.randint(1, 100, 8)
ax[1].plot(x, y)

上面设置好子图的布局之后,添加子图的顺序是从上到下,从左到右。

2. 子图的布局

子图的布局是按照行列设置的,设置之后,相应的位置可以添加子图。

x = np.array(range(0, 8))
rows, cols = 2, 2 # 2行2列,4个子图
fig, ax = plt.subplots(rows, cols) for i in range(rows):
for j in range(cols):
y = np.random.randint(1, 100, 8)
ax[i, j].plot(x, y) # i,j定位子图的位置


子图按照网格布局时,我们看到上面4个子图的Y轴刻度不一样,这样不利于比较。

x = np.array(range(0, 8))
rows, cols = 2, 2 # 2行2列,4个子图
fig, ax = plt.subplots(rows, cols, sharey='all') for i in range(rows):
for j in range(cols):
y = np.random.randint(1, 100, 8)
ax[i, j].plot(x, y) # i,j定位子图的位置


设置 sharey='all'之后,Y轴刻度保持一致,这样比较曲线才有意义。
上面的示例中 X轴刻度是一致的,如果不一致,可以用 sharex 属性来设置。

3. 复杂的布局

3.1. 不规则的网格

除了规则的网格布局,还可以通过 GridSpec 设置不规则的网格。
比如:

rows, cols = 3, 3
grid = plt.GridSpec(rows, cols) plt.subplot(grid[0, :2])
plt.subplot(grid[0, 2]) plt.subplot(grid[1, 0])
plt.subplot(grid[1, 1:]) plt.subplot(grid[2, :])


上例中设置了3行3列的网格,但是不是每个图形占用几个网格是可以调整的。

3.2. 嵌套图形

除了网格,还可以通过相对定位的方式来绘制多个子图。

fig = plt.figure()

fig.add_axes([0.1, 0.1, 1, 1])
fig.add_axes([0.3, 0.3, 0.3, 0.3])
fig.add_axes([0.7, 0.6, 0.3, 0.2])


上面按相对位置添加子图的函数 add_axes的参数是一个4元列表
这个列表4个元素的含义:

  1. 第一个元素表示子图左下角距离画布左边的距离占画布总宽度的比例
  2. 第二个元素表示子图左下角距离画布底边的距离占画布总高度的比例
  3. 第三个元素表示子图宽度占画布总宽度的比例
  4. 第三个元素表示子图高度占画布总高度的比例

注意,这里的4个值都是比例

4. 总结回顾

Matplotlib 中的每个子图可以有自己的标签、大小、位置和样式,可以方便地组合成一个复杂的图形。
我们一般在下列场景中使用子图:

  1. 数据可视化:将多个数据集在同一张图中显示,进行对比和分析。
  2. 图表组合:将多个图表组合在一起,形成一个综合性的图形。
  3. 数据分析:将多个数据集在同一张图中显示,进行筛选和筛选。
  4. 可视化规范化:将多个来源不同的数据集在同一张图中显示,保证图形的一致性和准确性。

【matplotlib基础】--子图的更多相关文章

  1. 数据分析与展示——Matplotlib基础绘图函数示例

    Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...

  2. Matplotlib基础图形之散点图

    Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如: ...

  3. Matplotlib基础知识

    Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...

  4. matplotlib基础

    Matplotlib 基础 注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt:如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习 一.简 ...

  5. Matplotlib基础使用

    matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...

  6. 模块简介与matplotlib基础

    模块简介与matplotlib基础 1.基本概念 1.1数据分析 对已知的数据进行分析,提取出一些有价值的信息. 1.2数据挖掘 对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息. 1.3数据 ...

  7. [笔记]SciPy、Matplotlib基础操作

    NumPy.SciPy.Matplotlib,Python下机器学习三大利器.上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib.目前接触到的东西不多,以后再遇到些比较常用的再更新 ...

  8. 第二周 数据分析之展示 Matplotlib基础绘图函数实例

    Pyplot基础图表函数 Pyplot饼图的绘制: Pyplot直方图的绘制: Pyplot极坐标图的绘制: Pyplot散点图的绘制: 单元小结: import numpy as np import ...

  9. matplotlib基础知识全面解析

    图像基本知识: 通常情况下,我们可以将一副Matplotlib图像分成三层结构: 1.第一层是底层的容器层,主要包括Canvas.Figure.Axes: 2.第二层是辅助显示层,主要包括Axis.S ...

  10. python数据图形化—— matplotlib 基础应用

    matplotlib是python中常用的数据图形化工具,用法跟matlab有点相似.调用简单,功能强大.在Windows下可以通过命令行 pip install matplotlib 来进行安装. ...

随机推荐

  1. Vue Element-ui 之 el-table自动滚动

    首先是 div结构布局 <div id="scrollId">//对el-table盒子设置 id 属性 <div style="height: 100 ...

  2. MD5加密后为0e开头的字符串

    QNKCDZO         0e830400451993494058024219903391 s878926199a      0e545993274517709034328855841020 s ...

  3. 【C#/.NET】使用ASP.NET Core对象池

    Nuget Microsoft.Extensions.ObjectPool 使用对象池的好处 减少初始化/资源分配,提高性能.这一条与线程池同理,有些对象的初始化或资源分配耗时长,复用这些对象减少初始 ...

  4. 使用 conda 和 Jupyter 在 R 中实现数据科学分析

    前两篇文章我们介绍了 Jupyter Notebook 的一些基础用法,今天我们来介绍一下如何使用 conda 和 Jupyter 在 R 中开始一个数据科学项目. 在开始之前我们先要明确一个概念:K ...

  5. 【Python&GIS】GDAL栅格转面&计算矢量面积

            GDAL(Geospatial Data Abstraction Library)是一个在X/MIT许可协议下的开源栅格空间数据转换库.它利用抽象数据模型来表达所支持的各种文件格式.它 ...

  6. 深入理解 Istio 流量管理的超时时间设置

    环境准备 部署 httpbin 服务: kubectl apply -f samples/httpbin/httpbin.yaml 部署 sleep 服务: kubectl apply -f samp ...

  7. 【园子资深博主直播】 冰蓝老师《ChatGPT 初探》

    AI对经济增长.经济周期.经济形态.社会就业都有着非常巨大的影响,ChatGPT4.0发布后,燃起了我们每一个开发人的激情和恐惧,但各路自媒体信息杂乱无序,缺少非常系统性的ChatGPT原理解读. 此 ...

  8. Spring Boot实现高质量的CRUD-5

    (续前文) 9.Service实现类代码示例 ​ ​ 以用户管理模块为例,展示Service实现类代码.用户管理的Service实现类为UserManServiceImpl.​UserManServi ...

  9. https 原理分析进阶-模拟https通信过程

    大家好,我是蓝胖子,之前出过一篇https的原理分析 ,完整的介绍了https概念以及通信过程,今天我们就来比较完整的模拟实现https通信的过程,通过这篇文章,你能了解到https核心的概念以及原理 ...

  10. ArrayList 扩容机制

    ArrayList 基本介绍 ArrayList实现了List接口.它可以存储包括null的任何类型的对象,允许重复元素.ArrayList在内部使用一个数组来存储元素,当元素数量超过数组容量时,Ar ...