在机器学习中,支持向量机Support Vector Machine)算法既可以用于回归问题,也可以用于分类问题。

支持向量机SVM)算法的历史可以追溯到1963年,当时前苏联统计学家弗拉基米尔·瓦普尼克(Vladimir N. Vapnik)和他的同事阿列克谢·切尔沃宁基斯(Alexey Ya. Chervonenkis)提出了支持向量机的概念。然而,由于当时的国际环境影响,他们用俄文发表的论文并没有受到国际学术界的关注。

直到20世纪90年代,瓦普尼克移民到美国,随后发表了SVM理论。
在此之后,SVM算法开始受到应有的重视。在1993年和1995年,Corinna Cortes和瓦普尼克提出了SVM的软间隔分类器,并对其进行了详细的研究和改进。随着机器学习领域的快速发展,SVM逐渐成为一种流行的监督学习算法,被广泛应用于分类回归问题。

一般来说,支持向量机用于分类问题时,会简称 SVC;用于回归问题时,会简称SVR

1. 概述

支持向量机回归(Support Vector Machine Regression,简称SVR)的基本思想是通过构建一个分类器,将输入数据映射到高维空间中,使得数据在高维空间中更加线性可分,从而得到一个最优的回归模型。


如上图所示,SVR的包括:

  1. 模型函数:\(f(x) = w^Tx +b\)
  2. 模型上下边缘分别为:\(w^T+x+b+\epsilon\)和 \(w^T+x+b-\epsilon\)

2. 创建样本数据

这次的回归样本数据,我们用 scikit-learn 自带的玩具数据集中的糖尿病数据集
关于玩具数据集的内容,可以参考:TODO

from sklearn.datasets import load_diabetes

# 糖尿病数据集
diabetes = load_diabetes()
X = diabetes.data
y = diabetes.target

这个数据集中大约有400多条数据。

3. 模型训练

训练之前,为了减少算法误差,先对数据进行标准化处理。

from sklearn import preprocessing as pp

# 数据标准化
X = pp.scale(X)
y = pp.scale(y)

接下来分割训练集测试集

from sklearn.model_selection import train_test_split

# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

然后用scikit-learn中的SVR模型来训练:

from sklearn.svm import SVR

# 定义支持向量机回归模型
reg = SVR(kernel='linear') # 训练模型
reg.fit(X_train, y_train)

SVR的主要参数包括:

  1. kernel:核函数类型,可以选择线性('linear')、多项式('poly')、径向基('rbf')、sigmoid('sigmoid')等。
  2. degree:多项式核函数的度,仅当kernel='poly'时有效。
  3. C:惩罚参数,控制对超出间隔的样本的惩罚力度。C值越大,对超出间隔的样本的惩罚力度越大;C值越小,模型越有可能出现过度拟合。
  4. epsilon:定义间隔的容忍度,epsilon越大,间隔越大。
  5. gamma:定义了核函数的系数,gamma越大,核函数的形状越窄,对数据的影响越小。
  6. tol:定义了优化算法的容忍度,tol越大,算法越容易接受较差的解。
  7. max_iter:定义了优化算法的最大迭代次数。

最后验证模型的训练效果:

from sklearn import metrics

# 在测试集上进行预测
y_pred = reg.predict(X_test) mse, r2, m_error = 0.0, 0.0, 0.0
y_pred = reg.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
m_error = metrics.median_absolute_error(y_test, y_pred) print("均方误差:{}".format(mse))
print("复相关系数:{}".format(r2))
print("中位数绝对误差:{}".format(m_error)) # 运行结果
均方误差:0.6235345942607318
复相关系数:0.3106068096398569
中位数绝对误差:0.5861766809598691

从预测的误差来看,训练的效果还不错

4. 总结

SVR算法的应用场景非常广泛,包括时间序列预测、金融市场分析、自然语言处理、图像识别等领域。
例如,在时间序列预测中,SVR算法可以用于预测股票价格、房价等连续变量的未来值。
金融市场分析中,SVR算法可以用于预测股票指数的走势,帮助投资者做出更加明智的投资决策。
自然语言处理中,SVR算法可以用于文本分类和情感分析等任务。
图像识别中,SVM回归算法可以用于图像分割和目标检测等任务。

总之,SVR算法是一种非常有效的机器学习算法,可以用于解决各种回归问题。
它的优点包括泛化能力强、能够处理非线性问题、对数据规模和分布不敏感等。
然而,它的计算复杂度较高,需要使用高效的优化算法进行求解,同时也需要仔细地选择合适的参数以避免过拟合和欠拟合等问题。

【scikit-learn基础】--『监督学习』之 支持向量机回归的更多相关文章

  1. Python基础『一』

    内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...

  2. Python基础『二』

    目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...

  3. 『cs231n』计算机视觉基础

    线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. [原创] 【2014.12.02更新网盘链接】基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装

    [原创] [2014.12.02更新网盘链接]基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装 joinlidong 发表于 2014-11-29 14:25:50 ...

  6. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  7. 『TensorFlow』批处理类

    『教程』Batch Normalization 层介绍 基础知识 下面有莫凡的对于批处理的解释: fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0] ...

  8. 『TensorFlow』梯度优化相关

    tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...

  9. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  10. 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支

    下图Github地址:Mask_RCNN       Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...

随机推荐

  1. c语言代码练习3

    //查看数字是否存在于数组中#define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> int main() { int i = 0; int ...

  2. MySQL快速导入千万条数据(3)

    目录 一.测试环境 二.命令行导入方式 三.LOAD DATA导入方式 四.结论 接上文,本次在较高性能的X86物理机上,做真实生产环境的大数据量导入测试. 一.测试环境 ■ CPU是24核,每核2线 ...

  3. 环境搭建:在VSCode搭建Python环境

      1.安装vscode     2.下载python解释器 安装python https://www.python.org/downloads/windows/ 下载可执行的安装文件:   安装完成 ...

  4. 手撕Vue-查找指令和模板

    接着上一篇文章,我们已经实现了提取元素到内存的过程,接下来我们要实现的是查找指令和模板. 大致的思路是这样的: 遍历所有的节点 需要判断当前遍历到的节点是一个元素还是一个文本 如果是一个元素, 我们需 ...

  5. LNOI 2023 游记

    Day -1 持续性的精神状态不太好,分明睡觉起床时间都没变,但白天就是非常非常困,为什么呢. 补不动任何题,脑子完全不转...... Day 0 13:30 才被家长叫醒,四点左右到了开发区还是好困 ...

  6. springboot整合jpa sqlite

    前言 最近有关项目需要用到SQLITE,我先是使用Mybatis去连接SQLITE,然后发现SQLITE对BLOB支持不好,在网上看到相关教程可以写mapper.xml文件,加一个handler解决B ...

  7. 实时计算Flink+实时数仓Hologres

    阿里云培训:https://developer.aliyun.com/learning/course/807/detail/13885?accounttraceid=d2070f0a9edb471c9 ...

  8. [Python急救站课程]猴子吃桃问题

    问题:猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个:第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后,每天早上都吃了前一天剩下的一半多一个.到了第五天早上想再吃时,见只剩下一个桃 ...

  9. 小景的Dba之路--压力测试和Oracle数据库缓存

    小景最近在做系统查询接口的压测相关的工作,其中涉及到了查询接口的数据库缓存相关的内容,在这里做一个汇总和思维发散,顺便简单说下自己的心得: 针对系统的查询接口,首次压测执行的时候TPS较低,平均响应时 ...

  10. FPGA常用IP核

    前言: 芯片行业中的IP,一般称为IP(Intellectual Property)核,是具有知识产权核的集成电路芯核的总称.说白了就是厂家实现的具有特定功能工具,然后我们可以直接调用,就相当于是函数 ...