关于B树,不想写太多了,因为花在基于树的查找上的时间已经特么有点多了,就简单写写算了,如果以后有需要,或者有时间,可以再深入写写

首先说一下,为什么要有B树,以及B树是什么,很多数据结构和算法的书上来就上B树的定义,然后讲基于B树的几个操作,什么插入啊,建立啊,分裂啊,最后写个查找算法了事

我想,请问一下,编书的人这样搞是什么意思,这样还不如直接画算法的示意图,接下来是源码就够了,这样学下来,各种查找,搜索算法之间都是孤立开来的,无法领会到他们为什么这样做,他们是怎样想出来的,算了,不扯了,心里烦编书的人

为什么会有B树呢?我们还是先回到二叉排序树和平衡二叉排序树上,有了他们,我们才能理解为什么会有B树

在平衡二叉排序树里,算法的时间复杂度为O(log2(n)),明显,这里的算法时间复杂度是取决于树的深度的,想一想,一个节点只能存储有限的数据,一个结点最多只能有两颗子树,这样一来,数据一多,树的深度就很大,因此,算法的时间复杂度很容易就变得很大,这种问题有什么解决办法呢?肯定是减少树的深度啊!,怎么减少树的深度呢?可以多增加几个子树啊!子树之间也是有序的,这样一来,树的深度不久降下来了吗,这样的话,这种多子树的平衡术的时间复杂度就为logm(n),其中的m为子树的个数,m越大,算法时间复杂度就很小了!

按照这样的思路,我们新提出来一种树,那就是B树了,B树通常被描述为m阶B树,m阶B树的定义如下:

1.每个结点最多只能有m颗子树()

2.根节点至少有2颗子树(根节点子树数目>=2&&<=m)

3.除了根节点之外的非叶结点至少有|_m/2_|颗子树(>=|_m/2_|&&<=m)

4.所有的叶子结点都在同一层()

好了,有了以上的定义,下面可以给出B树的数据结构了

#include<iostream>
#define M 100
typedef char KeyType;
//m阶B树表示:这个树每个节点最多能有m颗子树,根节点最少有2颗子树,非根的非叶子结点最少有ceil(m/2)颗子树
typedef struct _B_Node
{
struct _B_Node* childTree[M+1];//M+1个子树
int keyNum;//关键字个数,keyNum+1为子树个数
struct _B_Node* parent;
KeyType key[M+1];//m个关键字,第0个不用
}B_Node,*BTreeRoot;

  

接下来是基于B树的查找

//返回查找成功或者失败,成功时:node为该关键字所在结点的地址,number为该关键字在他节点中的位置,
//失败时:返回false,node为应该插入的结点,number为这个节点中应该插入的位置,
bool find_By_Btree(BTreeRoot root,int* number,B_Node* &node,KeyType k)
{
B_Node *p=root;
int i=1;
while (p)
{
for (i = 1; i <=p->keyNum; i++)
{ if (p->key[i]==k)
{
*number=i;
node=p;
return true;
}
else if (p->key[i]<k)
{
continue;
}
else
{
break;
}
}
node=p;
p=p->childTree[i-1];
}
if (p==nullptr)
{
*number=i;
node=p->parent;
return false;
} }

  

算法分析:通过对B树的树形的分析,不难发现,B树的时间复杂度为O(logm(n)),也可以写为log(n)

查找(四)-------基于B树的查找和所谓的B树的更多相关文章

  1. 数据结构与算法->树->2-3-4树的查找,添加,删除(Java)

    代码: 兵马未动,粮草先行 作者: 传说中的汽水枪 如有错误,请留言指正,欢迎一起探讨. 转载请注明出处. 目录 一. 2-3-4树的定义 二. 2-3-4树数据结构定义 三. 2-3-4树的可以得到 ...

  2. Python与数据结构[3] -> 树/Tree[1] -> 表达式树和查找树的 Python 实现

    表达式树和查找树的 Python 实现 目录 二叉表达式树 二叉查找树 1 二叉表达式树 表达式树是二叉树的一种应用,其树叶是常数或变量,而节点为操作符,构建表达式树的过程与后缀表达式的计算类似,只不 ...

  3. AVL树(查找、插入、删除)——C语言

    AVL树 平衡二叉查找树(Self-balancing binary search tree)又被称为AVL树(AVL树是根据它的发明者G. M. Adelson-Velskii和E. M. Land ...

  4. Python 树表查找_千树万树梨花开,忽如一夜春风来(二叉排序树、平衡二叉树)

    什么是树表查询? 借助具有特殊性质的树数据结构进行关键字查找. 本文所涉及到的特殊结构性质的树包括: 二叉排序树. 平衡二叉树. 使用上述树结构存储数据时,因其本身对结点之间的关系以及顺序有特殊要求, ...

  5. SDUT 3376 数据结构实验之查找四:二分查找

    数据结构实验之查找四:二分查找 Time Limit: 20MS Memory Limit: 65536KB Submit Statistic Problem Description 在一个给定的无重 ...

  6. 数据结构实验7:实现二分查找、二叉排序(查找)树和AVL树

    实验7 学号:      姓名:     专业: 7.1实验目的 (1) 掌握顺序表的查找方法,尤其是二分查找方法. (2) 掌握二叉排序树的建立及查找. 查找是软件设计中的最常用的运算,查找所涉及到 ...

  7. 计蒜客 41387.XKC's basketball team-线段树(区间查找大于等于x的最靠右的位置) (The Preliminary Contest for ICPC Asia Xuzhou 2019 E.) 2019年徐州网络赛

    XKC's basketball team XKC , the captain of the basketball team , is directing a train of nn team mem ...

  8. SDUT-3376_数据结构实验之查找四:二分查找

    数据结构实验之查找四:二分查找 Time Limit: 30 ms Memory Limit: 65536 KiB Problem Description 在一个给定的无重复元素的递增序列里,查找与给 ...

  9. Trie树-字典查找

    描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这一天,他们遇到了一本词典,于是小Hi就向小Ho提出了那个经典的问题: ...

随机推荐

  1. 弹出iframe内嵌页面元素到父页面并全屏化

    (注册博客好久了,一直没舍得添砖加瓦,主要是每次想写点东西的时候,随便搜一搜发现都比我总结的都要好,甚感尴尬,但是总是要开始的,所以这就是我的第一篇博客,也绝不会是最后一篇,废话不多说,直接入正题) ...

  2. React Native 之 TextInput使用

    前言 学习本系列内容需要具备一定 HTML 开发基础,没有基础的朋友可以先转至 HTML快速入门(一) 学习 本人接触 React Native 时间并不是特别长,所以对其中的内容和性质了解可能会有所 ...

  3. (十)Maven依赖详解

    1.何为依赖? 比如你是个男的,你要生孩子,呸呸呸...男的怎么生孩子,所以你得依赖你老婆,不过也不一定咯,你也可以依赖其她妹子. 我们在平时的项目开发中也是同理,你需要依赖一些东西才能实现相应的功能 ...

  4. 解决apache启动错误"httpd:Could not reliably determine..."

    启动apache遇到错误:httpd: Could not reliably determine the server's fully qualified domain name [root@serv ...

  5. javascript-模板方法模式-提示框归一化插件

    模板方法模式笔记   父类中定义一组算法操作骨架,而将一些实现步骤延迟到子类中,使得子类可以不改变父类的算法结构的同时可重新定义算法中某些实现步骤   实例:弹出框归一化插件 css样式 ;width ...

  6. 利用DetachedCriteria构建HQL参数动态匹配

    此文章是基于 搭建SpringMVC+Spring+Hibernate平台 1. DetachedCriteria构建类:CriteriaBuilder.java package com.ims.pe ...

  7. Windows下磁盘分配操作

    问题概述:在装系统的时候有时候并不能一下分出完全符合我们使用习惯的分区大小,我们可能需要在后期调整分区大小.以下是有关分区大小调整的操作. 使用工具:Windows磁盘管理工具. 操作步骤: 1.使用 ...

  8. 最实用的IT类网站及工具大集合

    1.聚合数据 大家在开发过程中,可能会用到各种各样的数据,想找一些接口来提供一些数据.比如天气预报查询,火车时刻表查询,彩票查询,身份证查询等等.有了这个接口,直接调用即可.各种各样的API接口满足你 ...

  9. 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)

    对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...

  10. Referenced file contains errors (http://www.springframework.org/schema...错误

    Referenced file contains errors (http://www.springframework.org/schema...错误 Referenced file contains ...