kNN1

 # -*- coding: utf-8 -*-
 """
 kNN : 최근접 이웃
 """

 import numpy as np # 다차원배열, 선형대수 연산
 import matplotlib.pyplot as plt

 # 1. 알려진 두 집단 x,y 산점도 시각화
 plt.scatter(1.2, 1.1) # A 집단
 plt.scatter(1.0, 1.0)
 plt.scatter(1.8, 0.8) # B 집단
 plt.scatter(2, 0.9)

 plt.scatter(1.6, 0.85, color='r') # 분류대상(알려지지 않은 집단)
 plt.show()

 # 2. DATA 생성과 함수 정의
 p1 = [1.2, 1.1] # A 집단
 p2 = [1.0, 1.0]
 p3 = [1.8, 0.8] # B 집단
 p4 = [2, 0.9]
 category = ['A','A','B','B'] # 알려진 집단 분류범주(Y변수)
 p5 = [1.6, 0.85] # 분류대상 

 # data 생성 함수 정의
 def data_set():
     # 선형대수 연산 : numpy형 변환
     know_group = np.array([p1, p2, p3, p4]) # 알려진 집단
     not_know_group = np.array(p5) # 알려지지 않은 집단
     class_category = np.array(category) # 정답(분류범주)
     return know_group,not_know_group,class_category 

 know_group,not_know_group,class_category=data_set()
 print('알려진 집단')
 """
 [[1.2 1.1]
  [1.  1. ]
  [1.8 0.8]
  [2.  0.9]]
 """
 print(know_group)
 print('알려지지 않은 집단')
 print(not_know_group) #[1.6  0.85]

 print('정답')
 print(class_category) #['A' 'A' 'B' 'B']

 #
 #차(-) -> 자곱(**) -> 합(sum) -> 제곱근(sqrt)

 diff=know_group-not_know_group #2차원 -1차원
 print('차=\n',diff)
 """
 차=
  [[-0.4   0.25]
  [-0.6   0.15]
  [ 0.2  -0.05]
  [ 0.4   0.05]]
 """

 sq_diff = diff ** 2
 sq_sum = sq_diff.sum(axis=1) #행단위 합계
 print(sq_sum) #[0.2225 0.3825 0.0425 0.1625]
 distance=np.sqrt(sq_sum)
 print(distance) #[0.47169906 0.61846584 0.20615528 0.40311289]
 #[3 4 1 2]거리  k=3 (B(2)>A(1))
 print(class_category)#['A' 'A' 'B' 'B']

 def classfy(know,not_know,cate,k):
     #유클리드인 거리계산식
     diff=know-not_know
     sq_diff = diff ** 2
     sq_sum = sq_diff.sum(axis=1)
     distance=np.sqrt(sq_sum)

     #2.가장 가까운 거리 오름차순 정렬 -> index
     sortDist=distance.argsort() #sort->index
     #print(sortDist) #[2 3 0 1]

     #3.최근접 이윳
     class_result={} #빈 set
     for i in range(k):#0~2
         key = cate[sortDist[i]] #i=0 -> 'B'
         class_result[key]=class_result.get(key,0)+1
     return class_result

 #함수 호출
 class_result=classfy(know_group,not_know_group,class_category,3)
 print(class_result) #{'B': 2, 'A': 1}

 #vot 함수
 def class_vote(class_result):
     return max(class_result,key=class_result.get)

 vote_result=class_vote(class_result)
 print("분류결과=",vote_result)#분류결과= B

kNN Class

 # -*- coding: utf-8 -*-
 """
 class 구현
 """

 import numpy as np
 from Step01_kNN import data_set

 know_group,not_know_group,class_category=data_set()

 #class =Func1+Func2+Func3
 class kNNclassify:   

     #1.최근접 이웃
     def classfy(self,know,not_know,cate,k):
         #유클리드인 거리계산식
         diff=know-not_know
         sq_diff = diff ** 2
         sq_sum = sq_diff.sum(axis=1)
         distance=np.sqrt(sq_sum)

         #2.가장 가까운 거리 오름차순 정렬 -> index
         sortDist=distance.argsort() #sort->index
         #print(sortDist) #[2 3 0 1]

         #3.최근접 이윳(k=3)
         self.class_result={} #빈 set
         for i in range(k):#0~2
             key = cate[sortDist[i]] #i=0 -> 'B'
             self.class_result[key]=self.class_result.get(key,0)+1

     #vot 함수
     def class_vote(self):
         return max(self.class_result,key=self.class_result.get)

 #class object 생성
 obj=kNNclassify() #생성자

 #objext.menber : self.class_result
 obj.classfy(know_group,not_know_group,class_category,3)

 vote_result=obj.class_vote()
 print('kNN 분류결과=',vote_result)#kNN 분류결과= B

NB

 # -*- coding: utf-8 -*-
 """
 통계적 분류기 - NB
 """
 import pandas as pd
 from sklearn import model_selection#train/test
 from sklearn.naive_bayes import GaussianNB 

 iris=pd.read_csv("../data/iris.csv")
 print(iris.head())
 """
    Sepal.Length  Sepal.Width  Petal.Length  Petal.Width Species
 0           5.1          3.5           1.4          0.2  setosa
 1           4.9          3.0           1.4          0.2  setosa
 2           4.7          3.2           1.3          0.2  setosa
 3           4.6          3.1           1.5          0.2  setosa
 4           5.0          3.6           1.4          0.2  setosa
 """

 #2. x,y 변수 선정
 cols=list(iris.columns)
 x_cols=cols[:4] #X:1~4(연속형)
 y_cols=cols[-1] #y:5(범주형)

 #3.train/test split
 iris_df=iris
 print(iris_df.shape)#(150, 5)
 train_iris,test_iris=model_selection.train_test_split(iris_df,test_size=0.3,random_state=123)
 print(train_iris.shape)#(105, 5)
 print(test_iris.shape)#(45, 5)

 #4. model생성 train set
 obj=GaussianNB() #object
 model=obj.fit(train_iris[x_cols],train_iris[y_cols])

 #5.model 평가
 pred=model.predict(test_iris[x_cols]) #Y예측
 Y = test_iris[y_cols] #정답

 #confusion matrix
 matrix=pd.crosstab(pred,Y)
 print(matrix)
 """
 Species     setosa  versicolor  virginica
 row_0
 setosa          18           0          0
 versicolor       0          10          2
 virginica        0           0         15
 """

 acc= (matrix.ix[0,0]+matrix.ix[1,1]+matrix.ix[2,2])/len(Y)
 print('분류정확도=',acc)#분류정확도= 0.9555555555555556

SVM

 # -*- coding: utf-8 -*-
 """
 SVM Model
 """
 import pandas as pd
 from sklearn import model_selection#train/test
 from sklearn import svm #model

 iris=pd.read_csv("../data/iris.csv")
 print(iris.head())
 """
    Sepal.Length  Sepal.Width  Petal.Length  Petal.Width Species
 0           5.1          3.5           1.4          0.2  setosa
 1           4.9          3.0           1.4          0.2  setosa
 2           4.7          3.2           1.3          0.2  setosa
 3           4.6          3.1           1.5          0.2  setosa
 4           5.0          3.6           1.4          0.2  setosa
 """

 #2. x,y 변수 선정
 cols=list(iris.columns)
 x_cols=cols[:4] #X:1~4(연속형)
 y_cols=cols[-1] #y:5(범주형)

 #3.train/test split
 iris_df=iris
 print(iris_df.shape)#(150, 5)
 train_iris,test_iris=model_selection.train_test_split(iris_df,test_size=0.3,random_state=123)
 print(train_iris.shape)#(105, 5)
 print(test_iris.shape)#(45, 5)

 #4.model -SVM
 obj=svm.SVC()
 model=obj.fit(train_iris[x_cols],train_iris[y_cols])

 #5.model 평가
 pred=model.predict(test_iris[x_cols])
 Y=test_iris[y_cols]

 #confusion matrix
 matrix=pd.crosstab(pred,Y)
 print(matrix)
 """
 Species     setosa  versicolor  virginica
 row_0
 setosa          18           0          0
 versicolor       0          10          1
 virginica        0           0         16
 """

 acc= (matrix.ix[0,0]+matrix.ix[1,1]+matrix.ix[2,2])/len(Y)
 print('분류정확도=',acc)#분류정확도= 0.9777777777777777

spam_train_test

 # -*- coding: utf-8 -*-
 """
 NB vs SWM
 -data set :sparse matrix 이용
 -file name:../data/spam_tran_test.npy
 """
 from sklearn.naive_bayes import GaussianNB
 from sklearn import svm
 import numpy as np
 import pandas as pd

 #1.file Loading
 X_train,X_test,y_train,y_test=np.load("../data/spam_tran_test.npy")
 print(X_train.shape) #(3901, 4000)
 print(X_test.shape) #(1673, 4000)
 print(type(y_train))#<class 'list'>

 #list -> numpy형변환: 선형대수 연산
 y_train=np.array(y_train)
 y_test=np.array(y_test)
 print(type(y_train))#<class 'numpy.ndarray'> 선형대수 하기위해서

 #2.NB model생성
 obj =GaussianNB()
 nb_model=obj.fit(X_train,y_train)

 pred=nb_model.predict(X_test)
 Y=y_test

 matrix=pd.crosstab(pred,Y)
 print("nb matrix\n",matrix)
 """
  col_0     0(ham)    1(spam)
 row_0
 0      1264   28
 1       167  214
 """
 acc=(matrix.ix[0,0]+matrix.ix[1,1])/len(Y)
 print("NB acc=",acc) #NB acc= 0.8834429169157203

 #2) 정확률:예측치 yes-> 실제값 yes
 precision=matrix.ix[1,1]/(matrix.ix[1,0]+matrix.ix[1,1])
 print("정확률=",precision)#정확률= 0.5616797900262467

 #3) 재현률:실제값yes -> 예측치 yes
 recall=matrix.ix[1,1]/(matrix.ix[0,1]+matrix.ix[1,1])
 print("재현률=",recall)#재현률= 0.8842975206611571

 #4) f1 score:precision,recall
 f1_score=2 * (precision*recall)/(precision+recall)
 print('f1_score=',f1_score)#f1_score= 0.6869983948635634

 #3.SVM model
 svm_obj =svm.SVC(kernel='linear')#kenel 함수
 svm_model=svm_obj.fit(X_train,y_train)

 svm_pred=svm_model.predict(X_test)
 svm_Y=y_test

 svm_matrix=pd.crosstab(svm_pred,svm_Y)
 print("svm matrix\n",svm_matrix)

 """
 svm matrix
  col_0     0    1
 row_0
 0      1428   36
 1         3  206
 """

 svm_acc=(svm_matrix.ix[0,0]+svm_matrix.ix[1,1])/len(svm_Y)
 print("svm acc=",svm_acc) #svm acc= 0.976688583383144

sms_spam_data

 # -*- coding: utf-8 -*-
 """
 Created on Sat Feb 23 15:52:23 2019

 @author: 502-03
 """

 from sklearn.naive_bayes import GaussianNB
 from sklearn import svm
 import numpy as np
 import pandas as pd

 #1.file Loading
 X_train,X_test,y_train,y_test=np.load("../data/sms_spam_data.npy")
 print(X_train.shape) #(4446, 6000)
 print(X_test.shape) #(1112, 6000)
 print(type(y_train))#<class 'pandas.core.series.Series'>

 #NB model 생성
 obj=GaussianNB()
 nb_model=obj.fit(X_train,y_train)
 nb_pred=nb_model.predict(X_test)
 nb_Y=y_test

 nb_tab=pd.crosstab(nb_pred,nb_Y)
 print("nb_tab=\n",nb_tab)
 """
 nb_tab=
  type   ham  spam
 row_0
 ham    812    10
 spam   156   134
 """
 nb_acc=(nb_tab.ix[0,0]+nb_tab.ix[1,1])/len(nb_Y)
 print("nb_acc=",nb_acc) #nb_acc= 0.8507194244604317

 #svm
 obj=svm.SVC(kernel='linear')
 svc_model=obj.fit(X_train,y_train)
 svc_pred=svc_model.predict(X_test)
 svc_Y=y_test

 svc_tab=pd.crosstab(svc_pred,svc_Y)
 print("svc_tab=\n",svc_tab)
 """
 svc_tab=
  type   ham  spam
 row_0
 ham    964    20
 spam     4   124
 """
 svc_acc=(svc_tab.ix[0,0]+svc_tab.ix[1,1])/len(svc_Y)
 print("svc_acc=",svc_acc) #svc_acc= 0.9784172661870504

 precision=svc_tab.ix[1,1]/(svc_tab.ix[1,0]+svc_tab.ix[1,1])
 print("정확률",precision)#정확률 0.96875

 recall=svc_tab.ix[1,1]/(svc_tab.ix[0,1]+svc_tab.ix[1,1])
 print("재현률",recall)#재현률 0.8611111111111112

 f1_score=2* (precision * recall)/(precision + recall)
 print("f1_score",f1_score)#f1_score 0.911764705882353

Classification的更多相关文章

  1. W3School-CSS 分类 (Classification) 实例

    CSS 分类 (Classification) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...

  2. Large Margin DAGs for Multiclass Classification

    Abstract We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which i ...

  3. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  4. 自然语言23_Text Classification with NLTK

    QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/text-classification-nltk-tutorial/?compl ...

  5. MATLAB 图像分类 Image Category Classification Using Bag of Features

    使用MATLAB实现图像的识别,这是MATLAB官网上面的例子,学习一下. http://cn.mathworks.com/help/vision/examples/image-category-cl ...

  6. Galaxy Classification

    10.3 Data Preparation After removing a large number of the columns from the raw SDSS dataset, introd ...

  7. Kaiju: Fast and sensitive taxonomic classification for metagenomics

    Kaiju: Fast and sensitive taxonomic classification for  metagenomics   问题描述:However, nucleotide comp ...

  8. 《Automatic Face Classification of Cushing’s Syndrome in Women – A Novel Screening Approach》学习笔记

    <针对女性库欣综合征患者的自动面部分类-一种新颖的筛查方法> Abstract 目的:库兴氏综合征对身体造成相当大的伤害如果不及时治疗,还经常是诊断的时间太长.在这项研究中,我们旨在测试面 ...

  9. [CS231n-CNN] Image classification and the data-driven approach, k-nearest neighbor, Linear classification I

    课程主页:http://cs231n.stanford.edu/ Task: Challenges: _________________________________________________ ...

  10. [ML] Naive Bayes for Text Classification

    TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频" ...

随机推荐

  1. vue+webpack+vue-cli获取URL地址参数

    在没有使用webpack+vue router开发中,想要获取RUL传的参数地址,直接通过一个函数就可以获得. 比如在  www.test.com/test.html?sign=test  地址中,想 ...

  2. mpvue——支持less

    安装 安装less和less-loader,我用的是淘宝源,你也可以直接npm $ cnpm install less less-loader --save 配置 打开build目录下的webpack ...

  3. 【51NOD1965】奇怪的式子 min_25筛

    题目描述 给你\(n\),求 \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)} \] 对\({10}^{12}+39\)取模. \(\sigma_0(i)\)表示约数个 ...

  4. 联想的笔记本有隐藏分区 导致无法安装win10 eufi启动 报错:windows无法更新计算机的启动配置。无法安装

    联想的笔记本都带着类似一键还原等的系统恢复软件,这些软件往往是将出厂设置备份在单 独的一个分区,此分区默认为隐藏,在 Windows 的磁盘管理中可以看到.打开磁盘管理器 的方法是右击计算机——管理, ...

  5. Vue(小案例_vue+axios仿手机app)_购物车

    一.前言 1.购物车 二.主要内容 1.效果演示如下,当我们选择商品数量改变的时候,也要让购物车里面的数据改变 2.具体实现 (1)小球从上面跳到下面的效果 (2)当点击上面的“加入购物车按钮”让小球 ...

  6. 安装mysql和xampp遇到问题

    1.mysql的期望地址和配置的地址不一致: 解决方法:修改注册表 在附件命令提示符输入regedit 找[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Se ...

  7. Hadoop记录- Yarn scheduler队列采集

    #!/bin/sh ip=10.116.100.11 port=8088 export HADOOP_HOME=/app/hadoop/bin rmstate1=$($HADOOP_HOME/yarn ...

  8. Groovy 设计模式 -- 享元模式

    Flyweight Pattern 享元模式, 将对象的相同属性, 以节省内存为目的,存储为一份公共对象, 所有对象共用此分对象. The Flyweight Pattern is a pattern ...

  9. a标签跳页传参,以及截取URL参数

    <a href="dd.index?aa=1&&bb=2"></a> //截取URL参数 // console.log(window.loc ...

  10. Codeforces Round #527 (Div. 3) . F Tree with Maximum Cost

    题目链接 题意:给你一棵树,让你找一个顶点iii,使得这个点的∑dis(i,j)∗a[j]\sum dis(i,j)*a[j]∑dis(i,j)∗a[j]最大.dis(i,j)dis(i,j)dis( ...