pro:开关问题,同上一题。 不过只要求输出最小的操作步数,无法完成输出“inf”

sol:高斯消元的解对应的一组合法的最小操作步数。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
int a[][],ans[];
int x[]={,,,,-};
int y[]={,,-,,};
bool Guass(int N)
{
rep(i,,N-){
int mark=i;
rep(j,i+,N-) if(abs(a[j][i])>abs(a[mark][i])) mark=j;
if(mark!=i) rep(j,,N) swap(a[i][j],a[mark][j]);
if(!a[i][i]) continue;
rep(j,i+,N){
if(!a[j][i]) continue;
rep(k,i,N){
a[j][k]^=a[i][k];
}
}
}
for(int i=N-;i>=;i--){
if(!a[i][i]&&a[i][N]) return false;//无解
ans[i]=a[i][N]&a[i][i];
rep(j,,i-) a[j][N]^=(a[j][i]&ans[i]);
}
return true;
}
char c[][];
int main()
{
int T,N;
scanf("%d",&T);
while(T--){
memset(a,,sizeof(a));
scanf("%d",&N);
rep(i,,N-) scanf("%s",c[i]);
rep(i,,N-)
rep(j,,N-) a[i*N+j][N*N]=(c[i][j]!='y');
rep(i,,N-)
rep(j,,N-) {
int t=i*N+j;
rep(k,,) {
if(i+x[k]>=&&i+x[k]<N&&j+y[k]>=&&j+y[k]<N){
a[(i+x[k])*N+j+y[k]][t]=;
}
}
}
if(Guass(N*N)){
int res=;
rep(i,,N*N-) res+=ans[i];
printf("%d\n",res);
}
else puts("inf");
}
return ;
}

POJ - 1681: Painter's Problem (开关问题-高斯消元)的更多相关文章

  1. POJ 1681 Painter's Problem 【高斯消元 二进制枚举】

    任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total ...

  2. POJ 1681 Painter's Problem(高斯消元+枚举自由变元)

    http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...

  3. poj 1681 Painter's Problem

    Painter's Problem 题意:给一个n*n(1 <= n <= 15)具有初始颜色(颜色只有yellow&white两种,即01矩阵)的square染色,每次对一个方格 ...

  4. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  6. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  7. POJ 1166 The Clocks (爆搜 || 高斯消元)

    题目链接 题意: 输入提供9个钟表的位置(钟表的位置只能是0点.3点.6点.9点,分别用0.1.2.3)表示.而题目又提供了9的步骤表示可以用来调正钟的位置,例如1 ABDE表示此步可以在第一.二.四 ...

  8. Problem A: Apple(高斯消元)

    可以发现具有非常多的方程, 然后高斯消元就能85分 然而我们发现这些方程组成了一些环, 我们仅仅设出一部分变量即可获得N个方程, 就可以A了 trick 合并方程 #include <cstdi ...

  9. 【POJ】1222 EXTENDED LIGHTS OUT(高斯消元)

    http://poj.org/problem?id=1222 竟然我理解了两天..... 首先先来了解异或方程组(或者说mod2方程组,modk的话貌似可以这样拓展出来) 对于一些我们需要求出的变量a ...

随机推荐

  1. idea 中add configuration

    记住:点击“+”号配置tomcat 第一步当然先得建一个web项目 1.file -> new -> project -Next -> Finish -项目建好了接下来就是配置了 - ...

  2. MSDN订户下载权限被屏蔽的办法

    使用Chrome浏览器,在加载完成页面之后,按F12,在控制台选项卡当中输入下面代码,即可解除屏蔽. $("#SubMigratedMessageArea").remove(); ...

  3. Spring Boot:如何优雅的使用 Mybatis

    mybatis-spring-boot-starter 官方说明:MyBatis Spring-Boot-Starter will help you use MyBatis with Spring B ...

  4. 数据结构~Sqlserver索引使用的B树

    B树相关概念 在B-树中查找给定关键字的方法是,首先把根结点取来,在根结点所包含的关键字K1,…,Kn查找给定的关键字(可用顺序查找或二分查找法),若找到等于给定值的关键字,则查找成功:否则,一定可以 ...

  5. closures

     一.什么是闭包和闭包的几种写法和用法 1.什么是闭包 闭包,官方对闭包的解释是:一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分.闭包的特点: 1. ...

  6. onceAgain, 这是一个py群的群公告说明

    群规: 1. 不骚扰人 2. 不涉及娱乐政治 3. 主要就这两条 入门参考:https://book.douban.com/review/9547077/ qq群/网盘:523445644  # 加群 ...

  7. JavaScript中的classList的使用

    动态控制元素的样式 style[样式名] = 值 增删改class的方式 classList下的方法 增加 class — node.classList.add() 删除 class — node.c ...

  8. 使用eclipse新建一个c项目

    一.打开eclipse并新建项目 1.快捷键:字体放大:Ctrl+Shift+“+” 字体缩小:Ctrl+“-”  

  9. 记-统计svn与git的log日志中的代码行变更

    任务要求 统计指定时间内,指定git地址与svn地址上的所有人员的代码行变更情况. 解决方案 最初为根据数据库中存储的所有git与svn地址来统计所有人员的提交代码行.之后由于库中存储的地址不全,改为 ...

  10. java后台常用json解析工具问题小结

    若排版紊乱可查看我的个人博客原文地址 java后台常用json解析工具问题小结 这里不细究造成这些问题的底层原因,只是单纯的描述我碰到的问题及对应的解决方法 jackson将java对象转json字符 ...