对于IO密集型任务:

  • 直接执行用时:10.0333秒
  • 多线程执行用时:4.0156秒
  • 多进程执行用时:5.0182秒

说明多线程适合IO密集型任务。

对于计算密集型任务

  • 直接执行用时:10.0273秒
  • 多线程执行用时:13.247秒
  • 多进程执行用时:6.8377秒

说明多进程适合计算密集型任务。

#coding=utf-8
import sys
import multiprocessing
import time
import threading # 定义全局变量Queue
g_queue = multiprocessing.Queue() def init_queue():
print("init g_queue start")
while not g_queue.empty():
g_queue.get()
for _index in range(10):
g_queue.put(_index)
print("init g_queue end")
return # 定义一个IO密集型任务:利用time.sleep()
def task_io(task_id):
print("IOTask[%s] start" % task_id)
while not g_queue.empty():
time.sleep(1)
try:
data = g_queue.get(block=True, timeout=1)
print("IOTask[%s] get data: %s" % (task_id, data))
except Exception as excep:
print("IOTask[%s] error: %s" % (task_id, str(excep)))
print("IOTask[%s] end" % task_id)
return g_search_list = list(range(10000))
# 定义一个计算密集型任务:利用一些复杂加减乘除、列表查找等
def task_cpu(task_id):
print("CPUTask[%s] start" % task_id)
while not g_queue.empty():
count = 0
for i in range(10000):
count += pow(3*2, 3*2) if i in g_search_list else 0
try:
data = g_queue.get(block=True, timeout=1)
print("CPUTask[%s] get data: %s" % (task_id, data))
except Exception as excep:
print("CPUTask[%s] error: %s" % (task_id, str(excep)))
print("CPUTask[%s] end" % task_id)
return task_id if __name__ == '__main__':
print("cpu count:", multiprocessing.cpu_count(), "\n") print(u"========== 直接执行IO密集型任务 ==========")
init_queue()
time_0 = time.time()
task_io(0)
print(u"结束:", time.time() - time_0, "\n") print("========== 多线程执行IO密集型任务 ==========")
init_queue()
time_0 = time.time()
thread_list = [threading.Thread(target=task_io, args=(i,)) for i in range(10)]
for t in thread_list:
t.start()
for t in thread_list:
if t.is_alive():
t.join()
print("结束:", time.time() - time_0, "\n") print("========== 多进程执行IO密集型任务 ==========")
init_queue()
time_0 = time.time()
process_list = [multiprocessing.Process(target=task_io, args=(i,)) for i in range(multiprocessing.cpu_count())]
for p in process_list:
p.start()
for p in process_list:
if p.is_alive():
p.join()
print("结束:", time.time() - time_0, "\n") print("========== 直接执行CPU密集型任务 ==========")
init_queue()
time_0 = time.time()
task_cpu(0)
print("结束:", time.time() - time_0, "\n") print("========== 多线程执行CPU密集型任务 ==========")
init_queue()
time_0 = time.time()
thread_list = [threading.Thread(target=task_cpu, args=(i,)) for i in range(10)]
for t in thread_list:
t.start()
for t in thread_list:
if t.is_alive():
t.join()
print("结束:", time.time() - time_0, "\n") print("========== 多进程执行cpu密集型任务 ==========")
init_queue()
time_0 = time.time()
process_list = [multiprocessing.Process(target=task_cpu, args=(i,)) for i in range(multiprocessing.cpu_count())]
for p in process_list:
p.start()
for p in process_list:
if p.is_alive():
p.join()
print("结束:", time.time() - time_0, "\n")

参考:https://zhuanlan.zhihu.com/p/24283040

Python IO密集型任务、计算密集型任务,以及多线程、多进程的更多相关文章

  1. IO密集型和计算密集型

    我们常说的多任务或者单任务分为两种: IO密集型的任务  计算密集型的任务   IO密集型的任务或:有阻塞的状态,就是不一直会运行CPU(中间就一个等待状态,就告诉CPU 等待状态,这个就叫IO密集型 ...

  2. 流动python - 写port扫描仪和各种并发尝试(多线程/多进程/gevent/futures)

    port扫描仪的原理非常easy.没有什么比操作更socket,能够connect它认为,port打开. import socket def scan(port): s = socket.socket ...

  3. CPU-bound(计算密集型) 和I/O bound(I/O密集型) 区别 与应用

    I/O密集型 (CPU-bound) I/O bound 指的是系统的CPU效能相对硬盘/内存的效能要好很多,此时,系统运作,大部分的状况是 CPU 在等 I/O (硬盘/内存) 的读/写,此时 CP ...

  4. [转]CPU-bound(计算密集型) 和I/O bound(I/O密集型)

    转自:http://blog.csdn.net/q_l_s/article/details/51538039 I/O密集型 (CPU-bound) I/O bound 指的是系统的CPU效能相对硬盘/ ...

  5. PU-bound(计算密集型) 和I/O bound(I/O密集型)

    转载:https://blog.csdn.net/q_l_s/article/details/51538039 I/O密集型 (CPU-bound) I/O bound 指的是系统的CPU效能相对硬盘 ...

  6. CPU-bound(计算密集型) 和I/O bound(I/O密集型)/数据密集型

    https://blog.csdn.net/q_l_s/article/details/51538039 I/O密集型 (CPU-bound)I/O bound 指的是系统的CPU效能相对硬盘/内存的 ...

  7. Python多线程多进程那些事儿看这篇就够了~~

    自己以前也写过多线程,发现都是零零碎碎,这篇写写详细点,填一下GIL和Python多线程多进程的坑~ 总结下GIL的坑和python多线程多进程分别应用场景(IO密集.计算密集)以及具体实现的代码模块 ...

  8. [Python]IO密集型任务 VS 计算密集型任务

    所谓IO密集型任务,是指磁盘IO.网络IO占主要的任务,计算量很小.比如请求网页.读写文件等.当然我们在Python中可以利用sleep达到IO密集型任务的目的. 所谓计算密集型任务,是指CPU计算占 ...

  9. Python进阶----GIL锁,验证Cpython效率(单核,多核(计算密集型,IO密集型)),线程池,进程池

    day35 一丶GIL锁 什么是GIL锁:    存在Cpython解释器,全名:全局解释器锁.(解释器级别的锁) ​   GIL是一把互斥锁,将并发运行变成串行. ​   在同一个进程下开启的多个线 ...

  10. Python并发编程05 /死锁现象、递归锁、信号量、GIL锁、计算密集型/IO密集型效率验证、进程池/线程池

    Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 目录 Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密 ...

随机推荐

  1. (整理4)RPC服务和HTTP服务简单说明

    很长时间以来都没有怎么好好搞清楚RPC(即Remote Procedure Call,远程过程调用)和HTTP调用的区别,不都是写一个服务然后在客户端调用么?这里请允许我迷之一笑~Naive!本文简单 ...

  2. Java 开发笔记

    共同学习,以下内容,随时更新. 前端 1.前端页面'是单引号的转义符,"是双引号.  问题(前端JS进行参数传递时,使用的是单引号扩住变量,但是变量形式为 2019-27  ...

  3. 学习笔记------------解决margin塌陷

    首先来解释一下什么是marg塌陷? 父子嵌套元素垂直方向的margin,父子元素是结合在一起的,他们两个会取其中最大的值 正常情况下应该是父级元素相对于浏览器定位,而子级元素相对于父级元素定位 但是m ...

  4. 保存cookie状态封装

    from urllib import request, parsefrom urllib.error import HTTPError,URLError#保存cookiefrom http impor ...

  5. [Oracle][DATAGUARD] 关于确认PHYSICAL STANDBY的同期状况的方法

    补上简单的确认PHYSICAL STANDBY的同期状况的方法: ODM TEST CASE===================Name = TC#1010_3 ####Primary#### SQ ...

  6. erlang二进制

    在Erlang中写处理二进制数据的代码是洋溢着幸福感的,它对于二进制强大的表现力甚至能让你忘掉了它种种不便,今天我们说说Erlang的二进制数据处理. Erlang中bit string代表无类型的内 ...

  7. Java——总结

    一.编写并运行java程序步骤: 1.编写java源代码 java源代码文件都已java作为扩展名 java代码格式: class 类名{ //主方法} 2.编译,将字符文件编译为字节文件 在dos中 ...

  8. 重新复习~ 为了重新找工作 - > XMLHttpRequest2.0 Jsonp nodeType 节点 webpack基本搭建 闭包的一句话总结

    XMLHttpRequest2.0 1.可以设置超时 (xhr.timeout = 1000; ontimeout()函数) 2.支持FormData对象管理表单数据(new FormData 方法: ...

  9. HIVE中IN的坑

    问题:为什么HIVE中用了 NOT IN,结果集没了? 注:这个是原创,转载请注明,谢谢!直接进实验室>> > select * from a;OK1 a12 a23 a3Time ...

  10. error: `cout' was not declared in this scope

    原因:C++ 1998 要求cout and endl被调用使用'std::cout'和'std::endl'格式,或using namespace std; 修改后:#include<iost ...