//P2002解题思路:
//先求SCC,缩点后,转换为DAG(有向无环图)
//在DAG上统计入度为0的scc数量即可 //Tarjan时间复杂度:O(N+E),每个点和每条边刚好被访问一次,在空间和时间上比Kosaraju好一些。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=500010;
struct edge{ int t; edge *nxt; edge(int to, edge * next){ t=to, nxt=next; } };
edge * h[maxn]; //h2是反图
void add(int u, int v){ h[u]=new edge(v, h[u]); }
int n, m, v[maxn], st[maxn], st_k, dfn[maxn], low[maxn], timestamp, sccno[maxn], scc_cnt, scc_indegree[maxn]; void tarjan(int x)
{
dfn[x]=low[x]=++timestamp;
st[++st_k]=x, v[x]=1; //v数组记录x是否在堆栈中
for(edge *p=h[x]; p; p=p->nxt)
{
if(!dfn[p->t]) tarjan(p->t), low[x]=min(low[x], low[p->t]); //通过dfn值判断点是否访问过
else if(v[p->t]) low[x]=min(low[x], low[p->t]); //通过v值判断该点是否在堆栈中
}
if(dfn[x]==low[x]) //发现SCC
{
sccno[x]=++scc_cnt; //scc计数,同时标记x
while(st[st_k]!=x)
{
sccno[st[st_k]]=scc_cnt;
v[st[st_k]]=0;
st_k--;
}
v[st[st_k--]]=0; //取消x在堆栈中的标记
}
} int main()
{
scanf("%d%d", &n, &m);
for(int i=1, b, e; i<=m; i++)
{
scanf("%d%d", &b, &e);
if(b!=e) add(b, e); //去除自环
}
for(int i=1; i<=n; i++) if(!dfn[i]) tarjan(i);
for(int i=1; i<=n; i++) //统计每个scc的入度
for(edge *p=h[i]; p; p=p->nxt)
if(sccno[i]!=sccno[p->t]) scc_indegree[sccno[p->t]]++; //起点和终点不在一个scc中才统计入度
int ans=0;
for(int i=1; i<=scc_cnt; i++) if(!scc_indegree[i]) ans++; //统计入度为0的scc的个数
printf("%d\n", ans);
return 0;
}

强连通分量(Tarjan)的更多相关文章

  1. 强连通分量(tarjan求强连通分量)

    双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍.<挑战程序设计>上有说明. 双dfs代码: #include <iostream> #include <cstd ...

  2. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  3. POJ2186 Popular Cows 强连通分量tarjan

    做这题主要是为了学习一下tarjan的强连通分量,因为包括桥,双连通分量,强连通分量很多的求法其实都可以源于tarjan的这种方法,通过一个low,pre数组求出来. 题意:给你许多的A->B ...

  4. [有向图的强连通分量][Tarjan算法]

    https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...

  5. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  6. 强连通分量tarjan缩点——POJ2186 Popular Cows

    这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定 ...

  7. 图之强连通、强连通图、强连通分量 Tarjan算法

    原文地址:https://blog.csdn.net/qq_16234613/article/details/77431043 一.解释 在有向图G中,如果两个顶点间至少存在一条互相可达路径,称两个顶 ...

  8. 图论-强连通分量-Tarjan算法

    有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...

  9. 求图的强连通分量--tarjan算法

    一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...

  10. POJ1236_A - Network of Schools _强连通分量::Tarjan算法

    Time Limit: 1000MS   Memory Limit: 10000K Description A number of schools are connected to a compute ...

随机推荐

  1. Centos7 使用 kubeadm 安装Kubernetes 1.13.3

    目录 目录 什么是Kubeadm? 什么是容器存储接口(CSI)? 什么是CoreDNS? 1.环境准备 1.1.网络配置 1.2.更改 hostname 1.3.配置 SSH 免密码登录登录 1.4 ...

  2. ORA-04030: out of process memory when trying to allocate 152 bytes (Logminer LCR c,krvtadc)

    今天使用LogMiner找回误更新的数据时,查询v$logmnr_contents时,遇到了"ORA-04030: out of process memory when trying to ...

  3. Docker-Dockerfile及基本语法

    Dockerfile的作用是通过它可以生成自定镜像,先介绍几个基本的docker命令. [docker镜像相关的命令]docker search 镜像名: 搜索镜像docker pull 镜像名: 镜 ...

  4. C#格式化

    格式化表示的一般格式 { N [ , M ] [ :格式码 ] } N:  指定参数序列中的输出序号,比如{0} , {1}, {2}等. M: 指定参数输出的最小长度. 如果参数长度小于M,则空格填 ...

  5. bilibili用户信息全栈爬取

  6. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  7. Django-CRM项目学习(八)-客户关系系统整体实现(待完成!)

    注意点:利用stark组件与rbac组件实现客户关系系统 1.需求整理与确认 1.1 客户关系系统整体需求 a

  8. CSV的简单用法

    读文件 import csv with open('test.csv','rb') as myFile: lines=csv.reader(myFile) for line in lines: pri ...

  9. js数组中随机选取一个数值!!

    var arr = ["太阳光大","成功是优点的发挥","不要小看自己", "口说好话","手心向下是助人& ...

  10. Java Core - ‘==’和‘equals’的区别

    不管是‘==’还是‘equals’,他们的比较都需要区分类型来讨论的: ‘==’ 当比较的数据类型是基本类型时,比较值是否相同 当比较的数据类型是引用类型时,不仅比较值相同还比较其所在内存地址是否相同 ...