//P2002解题思路:
//先求SCC,缩点后,转换为DAG(有向无环图)
//在DAG上统计入度为0的scc数量即可 //Tarjan时间复杂度:O(N+E),每个点和每条边刚好被访问一次,在空间和时间上比Kosaraju好一些。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=500010;
struct edge{ int t; edge *nxt; edge(int to, edge * next){ t=to, nxt=next; } };
edge * h[maxn]; //h2是反图
void add(int u, int v){ h[u]=new edge(v, h[u]); }
int n, m, v[maxn], st[maxn], st_k, dfn[maxn], low[maxn], timestamp, sccno[maxn], scc_cnt, scc_indegree[maxn]; void tarjan(int x)
{
dfn[x]=low[x]=++timestamp;
st[++st_k]=x, v[x]=1; //v数组记录x是否在堆栈中
for(edge *p=h[x]; p; p=p->nxt)
{
if(!dfn[p->t]) tarjan(p->t), low[x]=min(low[x], low[p->t]); //通过dfn值判断点是否访问过
else if(v[p->t]) low[x]=min(low[x], low[p->t]); //通过v值判断该点是否在堆栈中
}
if(dfn[x]==low[x]) //发现SCC
{
sccno[x]=++scc_cnt; //scc计数,同时标记x
while(st[st_k]!=x)
{
sccno[st[st_k]]=scc_cnt;
v[st[st_k]]=0;
st_k--;
}
v[st[st_k--]]=0; //取消x在堆栈中的标记
}
} int main()
{
scanf("%d%d", &n, &m);
for(int i=1, b, e; i<=m; i++)
{
scanf("%d%d", &b, &e);
if(b!=e) add(b, e); //去除自环
}
for(int i=1; i<=n; i++) if(!dfn[i]) tarjan(i);
for(int i=1; i<=n; i++) //统计每个scc的入度
for(edge *p=h[i]; p; p=p->nxt)
if(sccno[i]!=sccno[p->t]) scc_indegree[sccno[p->t]]++; //起点和终点不在一个scc中才统计入度
int ans=0;
for(int i=1; i<=scc_cnt; i++) if(!scc_indegree[i]) ans++; //统计入度为0的scc的个数
printf("%d\n", ans);
return 0;
}

强连通分量(Tarjan)的更多相关文章

  1. 强连通分量(tarjan求强连通分量)

    双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍.<挑战程序设计>上有说明. 双dfs代码: #include <iostream> #include <cstd ...

  2. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  3. POJ2186 Popular Cows 强连通分量tarjan

    做这题主要是为了学习一下tarjan的强连通分量,因为包括桥,双连通分量,强连通分量很多的求法其实都可以源于tarjan的这种方法,通过一个low,pre数组求出来. 题意:给你许多的A->B ...

  4. [有向图的强连通分量][Tarjan算法]

    https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...

  5. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  6. 强连通分量tarjan缩点——POJ2186 Popular Cows

    这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定 ...

  7. 图之强连通、强连通图、强连通分量 Tarjan算法

    原文地址:https://blog.csdn.net/qq_16234613/article/details/77431043 一.解释 在有向图G中,如果两个顶点间至少存在一条互相可达路径,称两个顶 ...

  8. 图论-强连通分量-Tarjan算法

    有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...

  9. 求图的强连通分量--tarjan算法

    一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...

  10. POJ1236_A - Network of Schools _强连通分量::Tarjan算法

    Time Limit: 1000MS   Memory Limit: 10000K Description A number of schools are connected to a compute ...

随机推荐

  1. REST教程

    REST教程 越来越多的人开始意识到,网站即软件,而且是一种新型的软件.这种"互联网软件"采用客户端/服务器模式,建立在分布式体系上,通过互联网通信,具有高延时(high late ...

  2. [idea] SpringBoot整合swagger2实现CRUD

    一:创建SpringBoot ,在pom.xml文件中加入jar包 <dependency> <groupId>io.springfox</groupId> < ...

  3. 如何删除Windows10操作系统资源管理器中的下载、图片、音乐、文档、视频、桌面、3D对象这7个文件夹

    通过注册表删除,步骤如下: 1.按下win+R,输入regedit,打开注册表 2.找到位置:计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Cur ...

  4. LeetCode算法题-Reach a Number(Java实现)

    这是悦乐书的第310次更新,第331篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第179题(顺位题号是754).你站在无限数字线的0号位置.在目的地有个target.在 ...

  5. 在html代码中js的script标签建议放在那里?

    今天编写了一个简单的js代码,F12有错误,然后发现是<script>放的位置有问题.之前在我的印象当中,说的是这个标签放在哪里都可以,然而...并不是这样的,例如我现在练习的这个代码,写 ...

  6. CentOS 安装 ceph 单机版(luminous版本)

    一.环境准备 CentOS Linux release 7.4.1708 (Core)一台,4块磁盘(sda.sdb,.sdc.sdd) 192.168.27.130 nceph 二.配置环境 1.修 ...

  7. ZHS16GBK的数据库导入到字符集为AL32UTF8的数据库

    字符集为ZHS16GBK的数据库导入到字符集为AL32UTF8的数据库  相信大家都对字符集有相当的了解了,废话就不多说了!直接步入正题:这里主要是测试含有 汉字的数据从ZHS16GBK的数据库导入到 ...

  8. Cordova入门系列(三)Cordova插件调用 转发 https://www.cnblogs.com/lishuxue/p/6018416.html

    Cordova入门系列(三)Cordova插件调用   版权声明:本文为博主原创文章,转载请注明出处 上一章我们介绍了cordova android项目是如何运行的,这一章我们介绍cordova的核心 ...

  9. EntityFramework Core进行读写分离最佳实践方式,了解一下(二)?

    前言 写过上一篇关于EF Core中读写分离最佳实践方式后,虽然在一定程度上改善了问题,但是在评论中有的指出更换到从数据库,那么接下来要进行插入此时又要切换到主数据库,同时有的指出是否可以进行底层无感 ...

  10. RB-Tree删除详解

    红黑树的删除操作较于插入操作,情况更为复杂: 考虑到红黑节点的差异性,我们在此通过红黑节点来考虑这个问题,即仅仅通过要删除的节点是红节点,还是黑节点来讨论不同的情况: 1  删除的红节点为叶子结点(此 ...