【XSY3141】哲学家 计算几何 线段树
题目描述
有一个平面,最开始平面上没有任何点。
你要按顺序加入 \(n\) 个点,求加入每个点后有多少三角形严格包含原点(在边界上不算)。
\(n\leq 400000\),无重点。
题解
其实这题本来是强制在线的。
考虑不满足条件的三个顶点有什么特征。
先把每个点的极角求出来,可以发现,不满足条件的三个点以及原点组成的扇形的角度 \(\leq \pi\)。
那么满足条件的三角形个数就是总的三角形个数减掉不满足条件的三角形个数。
先把这些点按极角排序,记 \(c_i\) 为 \(i\) 右侧弧度范围为 \(\pi\) 以内的点的个数。
插入一个点 \(x\) 的时候,找到 \(x\) 左边 \(\pi\) 范围内最左的点 \(y\) 以及右边 \(\pi\) 范围内最右的点 \(z\),贡献就是 \(y\sim x\) 的 \(c_i\) 之和 \(+ x\sim z\) 中任取两个点的方案数。
用平衡树/线段树维护即可。
当两个点的极角之差很小的时候,要用叉积判断大小关系。
注意三点共线的情况。
时间复杂度:\(O(n\log n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
typedef long long ll;
const int N=400010;
const db eps=1;
const db pi=acos(-1);
struct point
{
ll x,y;
point(ll a=0,ll b=0):x(a),y(b){}
};
point operator -(const point &a,const point &b){return point(a.x-b.x,a.y-b.y);}
ll operator *(const point &a,const point &b){return a.x*b.y-a.y*b.x;}
point operator -(const point &a){return point(-a.x,-a.y);}
point a[N];
int n;
db ang[N];
int e[N];
struct pp
{
db ang;
point a;
int id;
pp(db x=0,point y=point(),int z=0):ang(x),a(y),id(z){}
};
pp f[N];
int operator <(pp a,pp b)
{
if(fabs(a.ang-b.ang)>eps)
return a.ang<b.ang;
ll s=a.a*b.a;
if(s!=0)
return s>0;
return a.id<b.id;
}
namespace seg
{
int t[1100000];
ll s[1100000];
int s2[1100000];
#define ls (p<<1)
#define rs ((p<<1)|1)
#define mid ((L+R)>>1)
void add(int p,int v)
{
t[p]+=v;
s[p]+=(ll)v*s2[p];
}
void push(int p)
{
if(t[p])
{
add(ls,t[p]);
add(rs,t[p]);
t[p]=0;
}
}
void add(int p,int l,int r,int v,int L,int R)
{
if(l<=L&&r>=R)
{
add(p,v);
return;
}
push(p);
if(l<=mid)
add(ls,l,r,v,L,mid);
if(r>mid)
add(rs,l,r,v,mid+1,R);
s[p]=s[ls]+s[rs];
}
void set(int p,int x,int L,int R)
{
if(L==R)
{
s2[p]=1;
return;
}
push(p);
if(x<=mid)
set(ls,x,L,mid);
else
set(rs,x,mid+1,R);
s2[p]=s2[ls]+s2[rs];
}
ll query1(int p,int l,int r,int L,int R)
{
if(l<=L&&r>=R)
return s[p];
push(p);
ll res=0;
if(l<=mid)
res+=query1(ls,l,r,L,mid);
if(r>mid)
res+=query1(rs,l,r,mid+1,R);
return res;
}
int query2(int p,int l,int r,int L,int R)
{
if(l<=L&&r>=R)
return s2[p];
push(p);
int res=0;
if(l<=mid)
res+=query2(ls,l,r,L,mid);
if(r>mid)
res+=query2(rs,l,r,mid+1,R);
return res;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld%lld",&a[i].x,&a[i].y);
ang[i]=atan2(a[i].y,a[i].x);
if(!a[i].y&&a[i].x<0)
ang[i]=-pi;
}
for(int i=1;i<=n;i++)
f[i]=pp(ang[i],a[i],i);
sort(f+1,f+n+1);
for(int i=1;i<=n;i++)
e[f[i].id]=i;
int y,z;
ll s=0,ans;
for(int i=1;i<=n;i++)
{
if(ang[i]<-eps||(fabs(ang[i])<eps&&a[i]*point(1,0)>0))
{
y=lower_bound(f+1,f+n+1,pp(ang[i]+pi,-a[i],0))-f;
if(y<=n)
{
s+=seg::query1(1,y,n,1,n);
seg::add(1,y,n,1,1,n);
}
s+=seg::query1(1,1,e[i],1,n);
z=upper_bound(f+1,f+n+1,pp(ang[i]+pi,-a[i],n+1))-f-1;
if(y<=z)
{
ll w=seg::query2(1,y,z,1,n);
s-=w*(w-1)/2;
ll x=seg::query2(1,lower_bound(f+1,f+n+1,pp(ang[i],a[i],0))-f,e[i],1,n);
s-=x*w;
}
ll tmp=seg::query2(1,e[i],z,1,n);
s+=tmp*(tmp-1)/2;
seg::set(1,e[i],1,n);
if(e[i]>1)
seg::add(1,1,e[i]-1,1,1,n);
seg::add(1,e[i],e[i],tmp,1,n);
}
else
{
y=lower_bound(f+1,f+n+1,pp(ang[i]-pi,-a[i],0))-f;
s+=seg::query1(1,y,e[i],1,n);
z=upper_bound(f+1,f+n+1,pp(ang[i]-pi,-a[i],n+1))-f-1;
if(y<=z)
{
ll w=seg::query2(1,y,z,1,n);
s-=w*(w-1)/2;
ll x=seg::query2(1,lower_bound(f+1,f+n+1,pp(ang[i],a[i],0))-f,e[i],1,n);
s-=x*w;
}
ll tmp=0;
if(z>0)
tmp+=seg::query2(1,1,z,1,n);
tmp+=seg::query2(1,e[i],n,1,n);
s+=tmp*(tmp-1)/2;
seg::set(1,e[i],1,n);
if(e[i]>y)
seg::add(1,y,e[i]-1,1,1,n);
seg::add(1,e[i],e[i],tmp,1,n);
}
ans=(ll)i*(i-1)*(i-2)/6-s;
printf("%lld\n",ans);
}
return 0;
}
【XSY3141】哲学家 计算几何 线段树的更多相关文章
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- POJ 2991 Crane(线段树+计算几何)
POJ 2991 Crane 题目链接 题意:给定一个垂直的挖掘机臂.有n段,如今每次操作能够旋转一个位置,把[s, s + 1]专程a度,每次旋转后要输出第n个位置的坐标 思路:线段树.把每一段当成 ...
- Codeforces Gym100543B 计算几何 凸包 线段树 二分/三分 卡常
原文链接https://www.cnblogs.com/zhouzhendong/p/CF-Gym100543B.html 题目传送门 - CF-Gym100543B 题意 给定一个折线图,对于每一条 ...
- LOJ2401 JOISC2017 Dragon2 计算几何、线段树
传送门 先考虑每一个攻击方的龙和被攻击方的龙可以与多少个被攻击方/攻击方的龙匹配. 对于攻击方的龙\(A\)和被攻击方的龙\(B\),在道路为线段\((C,D)\)的情况下,能够与下图位置的所有对应属 ...
- POJ 3667 Hotel(线段树 区间合并)
Hotel 转载自:http://www.cnblogs.com/scau20110726/archive/2013/05/07/3065418.html [题目链接]Hotel [题目类型]线段树 ...
- 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题
“队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄> 线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...
- POJ 3667 线段树区间合并
http://www.cnblogs.com/scau20110726/archive/2013/05/07/3065418.html 用线段树,首先要定义好线段树的节点信息,一般看到一个问题,很难很 ...
- 【BZOJ 3165】 [Heoi2013]Segment 李超线段树
所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...
- poj 3667 Hotel (线段树的合并操作)
Hotel The cows are journeying north to Thunder Bay in Canada to gain cultural enrichment and enjoy a ...
随机推荐
- Monkey测试记录
配置环境变量,不然用不了adb命令 path这里也一样配置一下 命令的各种意思百度一下看看也就知道了 看到一篇博客推荐的一种测试命令,我也直接拿来用了 adb shell monkey -p 你的包名 ...
- ionic3 Loading组件的用法
import { LoadingController } from 'ionic-angular'; @Component({ selector: 'page-contact', templateUr ...
- MAC MAMP 中安装配置使用 ThinkPHP
MAMP PRO 是Mac OS X 平台上经典的本地环境应用 MAMP 的专业版.专门为专业的Web开发人员和程序员轻松地安装和管理自己的开发环境. MAMP这几个首字母代表Mac OS X系统上的 ...
- Spring Ioc工作机制 初步
Spring IoC工作原理 Spring 启动时读取应用程序提供的Bean配置信息,并在Spring容器中生成一份相应的Bean配置注册表,然后根据这张注册表实例化Bean,装配好Bean之间的依赖 ...
- SAP CRM Installed Bases(IBase)简介
SAP CRM使用Installed Base(以下简称IBase)来组织服务相关对象并进行管理.因为我在最近的工作中经常接触这个概念,所以学习了一点相关文档.下面是文档的翻译. 本文链接:https ...
- 【Python 04】Python开发环境概述
1.Python概述 Python是一种计算机程序设计语言,一个python环境中需要有一个解释器和一个包集合. (1)Python解释器 使用python语言编写程序之前需要下载一个python解释 ...
- Git命令行管理代码、安装及使用
出处:https://www.cnblogs.com/ximiaomiao/p/7140456.html Git安装和使用 目的:通过Git管理github托管项目代码 一.下载安装Git 1 ...
- 应用 memcached 提升站点性能
减少读自数据库和数据源 开源 memcached 工具是一个用来存储常用信息的缓存,有了它,您便无需从缓慢的资源,比如磁盘或数据库,加载(并处理)信息了.该工具可部署在专用的情况下,也可作为用完现有环 ...
- Flafka: Apache Flume Meets Apache Kafka for Event Processing
The new integration between Flume and Kafka offers sub-second-latency event processing without the n ...
- 使用time+dd测试硬盘读写速度
命令:time dd if=/dev/zero bs=1M count=2048 of=direct_2G 此命令为在当前目录下新建一个2G的文件 Demo如下: 写速度: time dd if= ...