【原】Coursera—Andrew Ng机器学习—Week 1 习题—Linear Regression with One Variable 单变量线性回归
Question 1
Consider the problem of predicting how well a student does in her second year of college/university, given how well she did in her first year.
Specifically, let x be equal to the number of “A” grades (including A-. A and A+ grades) that a student receives in their first year of college (freshmen year). We would like to predict the value of y, which we define as the number of “A” grades they get in their second year (sophomore year).
Here each row is one training example. Recall that in linear regression, our hypothesis is hθ(x)=θ0+θ1x, and we use m to denote the number of training examples.
|
x |
y |
|---|---|
|
5 |
4 |
|
3 |
4 |
|
0 |
1 |
|
4 |
3 |
For the training set given above (note that this training set may also be referenced in other questions in this quiz), what is the value of m? In the box below, please enter your answer (which should be a number between 0 and 10).
Answer:
4
Question 2
Consider the following training set of m=4 training examples:
|
x |
y |
|---|---|
|
1 |
0.5 |
|
2 |
1 |
|
4 |
2 |
|
0 |
0 |
Consider the linear regression model hθ(x)=θ0+θ1x. What are the values of θ0 and θ1
that you would expect to obtain upon running gradient descent on this
model? (Linear regression will be able to fit this data perfectly.)
θ0=0.5,θ1=0
θ0=0.5,θ1=0.5
θ0=1,θ1=0.5
θ0=0,θ1=0.5
θ0=1,θ1=1
Answer:
θ0=0,θ1=0.5
As J(θ0,θ1)=0, y = hθ(x) = θ0 + θ1x. Using any two values in the table, solve for θ0, θ1.
Question 3
Suppose we set θ0=−1,θ1=0.5. What is hθ(4)?
Answer:
Setting x = 4, we have hθ(x)=θ0+θ1x = -1 + (0.5)(4) = 1
Question 4
Let f be some function so that f(θ0,θ1) outputs a number. For this problem,f is some arbitrary/unknown smooth function (not necessarily the cost function of linear regression, so f may have local optima).Suppose we use gradient descent to try to minimize f(θ0,θ1) as a function of θ0 and θ1. Which of thefollowing statements are true? (Check all that apply.)
Even if the learning rate α is very large, every iteration of gradient descent will decrease the value of f(θ0,θ1).
If the learning rate is too small, then gradient descent may take a very long time to converge.
If θ0 and θ1 are initialized at a local minimum, then one iteration will not change their values.
If θ0 and θ1 are initialized so that θ0=θ1,
then by symmetry (because we do simultaneous updates to the two
parameters), after one iteration of gradient descent, we will still have
θ0=θ1.
Answers:
|
True or False |
Statement |
Explanation |
|---|---|---|
|
True |
If the learning rate is too small, then gradient descent may take a very long time to converge. |
If the learning rate is small, gradient descent ends up taking an |
|
True |
If θ0 and θ1 are initialized at a local minimum, then one iteration will not change their values. |
At a local minimum, the derivative (gradient) is zero, so gradient descent will not change the parameters. |
|
False |
Even if the learning rate α is very large, every iteration of gradient descent will decrease the value of f(θ0,θ1). |
If the learning rate is too large, one step of gradient descent |
|
False |
If θ0 and θ1 are initialized so that θ0=θ1, |
The updates to θ0 and θ1 are different (even |
Other Options:
|
True or False |
Statement |
Explanation |
|---|---|---|
|
True |
If the first few iterations of gradient descent cause f(θ0,θ1) to increase rather than decrease, then the most likely cause is that we have set the learning rate to too large a value |
if alpha were small enough, then gradient descent should always successfully take a tiny small downhill and decrease f(θ0,θ1) |
|
False |
No matter how θ0 and θ1 are initialized, so |
This is not true, depending on the initial condition, gradient descent may end up at different local optima. |
|
False |
Setting the learning rate to be very small is not harmful, and can only speed up the convergence of gradient descent. |
If the learning rate is small, gradient descent ends up taking an |
Question 5
Suppose that for some linear regression problem (say, predicting
housing prices as in the lecture), we have some training set, and for
our training set we managed to find some θ0, θ1 such that J(θ0,θ1)=0.
Which of the statements below must then be true? (Check all that apply.)
For this to be true, we must have y(i)=0 for every value of i=1,2,…,m.
Gradient descent is likely to get stuck at a local minimum and fail to find the global minimum.
For this to be true, we must have θ0=0 and θ1=0 so that hθ(x)=0
Our training set can be fit perfectly by a straight line, i.e.,
all of our training examples lie perfectly on some straight line.
Answers:
|
True or False |
Statement |
Explanation |
|---|---|---|
|
False |
For this to be true, we must have y(i)=0 for every value of i=1,2,…,m. |
So long as all of our training examples lie on a straight line, we will be able to find θ0 and θ1) so that J(θ0,θ1)=0. It is not necessary that y(i) for all our examples. |
|
False |
Gradient descent is likely to get stuck at a local minimum and fail to find the global minimum. |
none |
|
False |
For this to be true, we must have θ0=0 and θ1=0 so that hθ(x)=0 |
If J(θ0,θ1)=0 that means the line defined by the equation “y = θ0 + θ1x” perfectly fits all of our data. There’s no particular reason to expect that the values of θ0 and θ1 that achieve this are both 0 (unless y(i)=0 for all of our training examples). |
|
True |
Our training set can be fit perfectly by a straight line, i.e., all of our training examples lie perfectly on some straight line. |
If J(θ0,θ1)=0, that means the line defined by the equation "y=θ0+θ1x" perfectly fits all of our data. |
| False |
We can perfectly predict the value of y even for new examples that we have not yet seen. (e.g., we can perfectly predict prices of even new houses that we have not yet seen.) |
None |
| False |
This is not possible: By the definition of J(θ0,θ1), it is not possible for there to exist θ0 and θ1 so that J(θ0,θ1)=0 |
None |
| True |
For these values of θ0 and θ1 that satisfy J(θ0,θ1)=0, we have that hθ(x(i))=y(i) for every training example (x(i),y(i)) |
Not all the hθ(x(i)) need to be equal to y(i) |
【原】Coursera—Andrew Ng机器学习—Week 1 习题—Linear Regression with One Variable 单变量线性回归的更多相关文章
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归
Lecture2 Linear regression with one variable 单变量线性回归 2.1 模型表示 Model Representation 2.1.1 线性回归 Li ...
- 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归
Gradient Descent for Multiple Variables [1]多变量线性模型 代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...
- 【原】Coursera—Andrew Ng机器学习—Week 3 习题—Logistic Regression 逻辑回归
课上习题 [1]线性回归 Answer: D A 特征缩放不起作用,B for all 不对,C zero error不对 [2]概率 Answer:A [3]预测图形 Answer:A 5 - x1 ...
- 【原】Coursera—Andrew Ng机器学习—Week 11 习题—Photo OCR
[1]机器学习管道 [2]滑动窗口 Answer:C ((200-20)/4)2 = 2025 [3]人工数据 [4]标记数据 Answer:B (10000-1000)*10 /(8*60*60) ...
- 【原】Coursera—Andrew Ng机器学习—Week 5 习题—Neural Networks learning
课上习题 [1]代价函数 [2]代价函数计算 [3] [4]矩阵的向量化 [5]梯度校验 Answer:(1.013 -0.993) / 0.02 = 3.001 [6]梯度校验 Answer:学习的 ...
- 【原】Coursera—Andrew Ng机器学习—Week 10 习题—大规模机器学习
[1]大规模数据 [2]随机梯度下降 [3]小批量梯度下降 [4]随机梯度下降的收敛 Answer:BD A 错误.学习率太小,算法容易很慢 B 正确.学习率小,效果更好 C 错误.应该是确定阈值吧 ...
- 【原】Coursera—Andrew Ng机器学习—Week 9 习题—异常检测
[1]异常检测 [2]高斯分布 [3]高斯分布 [4] 异常检测 [5]特征选择 [6] [7]多变量高斯分布 Answer: ACD B 错误.需要矩阵Σ可逆,则要求m>n 测验1 Answ ...
- 【原】Coursera—Andrew Ng机器学习—Week 8 习题—聚类 和 降维
[1]无监督算法 [2]聚类 [3]代价函数 [4] [5]K的选择 [6]降维 Answer:本来是 n 维,降维之后变成 k 维(k ≤ n) [7] [8] Answer: 斜率-1 [9] A ...
- 【原】Coursera—Andrew Ng机器学习—Week 7 习题—支持向量机SVM
[1] [2] Answer: B. 即 x1=3这条垂直线. [3] Answer: B 因为要尽可能小.对B,右侧红叉,有1/2 * 2 = 1 ≥ 1,左侧圆圈,有1/2 * -2 = -1 ...
随机推荐
- .net 学习路线感想(转)
从上到大学到现在工作,已经有六年多了,发现学习编程到以开发为工作也是一个挺长的过程的. 大学中,从c语言到java.C#到其他各种语言的学习,还有其他知识的学习如:数据库(oracle.sql Ser ...
- Android常见面试笔试题目
Android常见面试笔试题目 1.在多线程编程这块,我们经常要使用Handler,Thread和Runnable这三个类,那么他们之间的关系你是否弄清楚了呢? 答:可以处理消息循环的线程,他是一个拥 ...
- windows C++ 全局异常捕捉函数
windows 核心编程中讲过 SEH 结构化异常处理 ::SetUnhandledExceptionFilter(MyUnhandledExceptionFilter); LONG WINAPI M ...
- 转:C++模板特化的概念
http://blog.csdn.net/yesterday_record/article/details/7304025 很久没有看C++,在看STL源码剖析时,看到一个function templ ...
- 【常用软件】木木的常用软件点评(2)------VC程序员常用工具篇
摘自:http://blog.csdn.net/liquanhai/article/details/7215045 木木的常用软件点评(2)------VC程序员常用工具篇 分类: VC++经验总结 ...
- 【MFC】MFC技巧学习 当做字典来查
MFC技巧学习 摘自:http://www.cnblogs.com/leven20061001/archive/2012/10/17/2728023.html 1."属性页的添加:创建对话框 ...
- 使用js构造"ddMMMyy"格式的日期供postman使用(最low的方式)
var date = new Date(); date.setDate(date.getDate() + 10); var year = date.getFullYear().toString().s ...
- Yet another A + B
time limit per test 0.25 s memory limit per test 64 MB input standard input output standard output Y ...
- 【sqlite】错误代码整理
这两天为了一个问题折腾了好久,记载一下. SQLite语句一定要严格按例子来写,例如: "CREATE TABLE PunchData (Id Text primary key, Heigh ...
- NSArray四种遍历方法