Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices

vertex:(nr_of_successors) successor1 successor2 ... successorn

...

where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:

nr_of_pairs

(u v) (x y) ...

The input file contents several data sets (at least one).

Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times

For example, for the following tree:

Sample Input

5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)

Sample Output

2:1
5:5

Hint

Huge input, scanf is recommended.
题意:求最近公共祖先,模板题。

 #include <iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#include<algorithm>
typedef long long ll;
using namespace std;
const int MAXN=1e3+;
int m,n;
int visit[MAXN];
int is_root[MAXN];
int str[MAXN];
int head[MAXN];//以第i条边为起点的最后输入的那个编号
int ans[MAXN];
int mp[MAXN][MAXN];
int cnt,root,x,y,cx,cy;
struct node
{
int to;//边的终点
int next;//与第i条边同起点的一条边的存储位置
int vi;//权值
}edge[MAXN];
void add_edge(int x,int y)
{
edge[cnt].to=y;
edge[cnt].next=head[x];
head[x]=cnt++;
}
void init()
{
cnt=;
memset(visit,,sizeof(visit));
memset(mp,,sizeof(mp));
memset(ans,,sizeof(ans));
memset(is_root,true,sizeof(is_root));
memset(head,-,sizeof(head));
for(int i=;i<=m;i++)
{
str[i]=i;
}
int p,k;
for(int i=;i<=m;i++)
{
scanf("%d:(%d)",&p,&k);
for(int j=;j<=k;j++)
{
scanf("%d",&x);
add_edge(p,x);
is_root[x]=false;
} }
for(int i=;i<=m;i++)//找根节点(入度为0的点)
{
if(is_root[i])
{
root=i;
break;
}
}
}
int Find(int x)
{
int temp=x;
while(temp!=str[temp])
{
temp=str[temp];
}
return temp;
}
void Unit(int x,int y)
{
int root1=Find(x);
int root2=Find(y);
if(root1!=root2)
{
str[y]=root1;
}
}
void LCA(int u)
{
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
LCA(v);
Unit(u,v);
visit[v]=true;
}
for(int i=;i<=m;i++)//遍历图中所有点,找出与当前顶点u有关系的点,若该点i已访问,则找到v,i的lca;
{
if(visit[i]&&mp[u][i])
{
int k=Find(i);
ans[k]+=mp[u][i];
}
}
}
void solve()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf(" (%d%d)",&cx,&cy);
mp[cx][cy]++;
mp[cy][cx]++;
}
LCA(root);
}
void output()
{
for(int i=;i<=m;i++)
{
if(ans[i])
{
printf("%d:%d\n",i,ans[i]);
}
}
}
int main()
{
while(scanf("%d",&m)!=-)
{
init();
solve();
output();
}
return ;
}

Closest Common Ancestors的更多相关文章

  1. POJ 1470 Closest Common Ancestors

    传送门 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 17306   Ac ...

  2. poj----(1470)Closest Common Ancestors(LCA)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 15446   Accept ...

  3. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  4. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

  5. POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13370   Accept ...

  6. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  7. poj1470 Closest Common Ancestors [ 离线LCA tarjan ]

    传送门 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 14915   Ac ...

  8. BNUOJ 1589 Closest Common Ancestors

    Closest Common Ancestors Time Limit: 2000ms Memory Limit: 10000KB This problem will be judged on PKU ...

  9. poj——1470 Closest Common Ancestors

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 20804   Accept ...

  10. Closest Common Ancestors POJ 1470

    Language: Default Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissio ...

随机推荐

  1. LeetCode OJ:Spiral Matrix(螺旋矩阵)

    Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral or ...

  2. LeetCode OJ:Valid Palindrome(验证回文)

    Valid Palindrome Given a string, determine if it is a palindrome, considering only alphanumeric char ...

  3. New Concept English three (37)

    28 words/minute 44 typing errors We have learnt to expect that trains will be punctual. After years ...

  4. gethostbyname()函数

    gethostbyname()函数说明——用域名或主机名获取IP地址 包含头文件    #include <netdb.h>    #include <sys/socket.h> ...

  5. SPS和PPS有哪些重要的参数?

    SPS: Level_idc: Bit_depth_luma_minus8: Bit_depth_chroma_minus8: Pic_order_cnt_type: Num_ref_frames: ...

  6. java String 转 Long 两种方法区别

    Long.ValueOf("String")返回Long包装类型 包装类型: Byte,Integer,Short,Long,Boolean,Character,Float,Dou ...

  7. Leetcode 1013. Partition Array Into Three Parts With Equal Sum

    简单题,暴力找出来就行. class Solution: def canThreePartsEqualSum(self, A: List[int]) -> bool: s = sum(A) if ...

  8. (一)Nginx正向代理与反向代理

    引言:身为前端开发人员来说对于Nginx的作用或许很少听到,这个东西是后端使用的,Nginx对前端而言意味着什么,有什么用呢?大白会整理出几篇文章给大家细细道来. 1.正向代理的概念 正向代理,也就是 ...

  9. 【MFC】picture控件 两种有细微差别的动态加载图片方法

    摘自:http://www.jizhuomi.com/software/193.html VS2010/MFC编程入门之二十七(常用控件:图片控件Picture Control) 分类标签: 编程入门 ...

  10. c++使用http协议上传文件到七牛云服务器

    使用c++ http协议上传文件到七牛服务器时,比较搞的一点就是header的设置: "Content-Type:multipart/form-data;boundary=xxx" ...