You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

题意:有n阶楼梯,每次可以走一步或者两步,总共有多少种方法。

思路:动态规划。维护一个一维数组dp[n+1],dp[0]为n=0时的情况,dp[ i ]为到达第i阶台阶总共的方法。例,当n=4时,如下图,很快就可以推出状态转移方程为:dp[i]=dp[i-1]+dp[i-2] (i >=2)。

代码如下:

 class Solution {
public:
int climbStairs(int n)
{
vector<int> dp(n+,);
dp[]=,dp[]=;
for(int i=;i<n+;i++)
{
dp[i]=dp[i-]+dp[i-];
}
return dp[n];
}
};

[Leetcode] climbing stairs 爬楼梯的更多相关文章

  1. [LeetCode] 70. Climbing Stairs 爬楼梯问题

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  2. [LeetCode] 70. Climbing Stairs 爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  3. [LeetCode] Min Cost Climbing Stairs 爬楼梯的最小损失

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  4. [LeetCode] 746. Min Cost Climbing Stairs 爬楼梯的最小损失

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  5. [LeetCode] Climbing Stairs 爬梯子问题

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  6. climbing stairs(爬楼梯)(动态规划)

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  7. Climbing Stairs爬楼梯——动态规划

    题目描写叙述: 初阶:有n层的台阶,一開始你站在第0层,每次能够爬两层或者一层. 请问爬到第n层有多少种不同的方法? 进阶:假设每次能够爬两层.和倒退一层,同一个位置不能反复走,请问爬到第n层有多少种 ...

  8. LeetCode 70. Climbing Stairs爬楼梯 (C++)

    题目: You are climbing a stair case. It takes n steps to reach to the top. Each time you can either cl ...

  9. [leetcode]70. Climbing Stairs爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

随机推荐

  1. 安装docker和更改docker镜像下载目录

    centos6.x系列: yum install http://mirrors.yun-idc.com/epel/6/i386/epel-release-6-8.noarch.rpm yum inst ...

  2. HTML5+ MUI实现ajax的一个demo

    index.html <!DOCTYPE html> <html> <head> <meta charset="utf-8"> &l ...

  3. ZooKeeper(3)-内部原理

    一. 节点类型 二. Stat结构体 1)czxid-创建节点的事务zxid 每次修改ZooKeeper状态都会收到一个zxid形式的时间戳,也就是ZooKeeper事务ID. 事务ID是ZooKee ...

  4. python中的字符串(str)操作

    字符串是python中数据类型.一般就单引号(‘’)或双引号(“”)引起来的内容就是字符串. 例如:下面两个都是定义字符串 str1 = "hello world" str2 = ...

  5. Python3 列表,元组,字典,字符串知识小结

    一.知识概要 1. 列表,元组,字典,字符串的创建方式 2. 列表,元组,字典,字符串的方法调用 3. 列表,元组,字典,字符串的常规用法 二.列表 # 列 表 # 列表基础 list_1 = ['a ...

  6. Java8新特性(三)——Optional类、接口方法与新时间日期API

    一.Optional容器类 这是一个可以为null的容器对象.如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象. 查看结构图可以看到有如下常用方法: of(T)—— ...

  7. Android面试收集录 电话、短信和联系人、多媒体技术

    1.请写出调用系统拨号界面? Intent intent=new Intent(Intent.ACTION_DIAL,Uri.pase("tel:12345678910")); s ...

  8. docker学习(一) 安装

    一.什么是docker 参见https://baike.baidu.com/item/Docker/13344470?fr=aladdin 个人的理解是,通俗来说,就是相当于一个方便携带且个体独立的虚 ...

  9. React实现最完整的百度搜索框

    import React,{Component} from 'react' import ReactDOM,{render} from 'react-dom' import 'bootstrap/di ...

  10. 通过数据库恢复SharePoint网站

           SharePoint网站一般包含很多个数据库,最主要的有3个,分别是SharePoint_Admin_Content(管理中心数据库),SharePoint_Config(配置数据库)和 ...