Triple

Time Limit: 20 Sec  Memory Limit: 64 MB
Submit: 847  Solved: 482
[Submit][Status][Discuss]

Description

我们讲一个悲伤的故事。
从前有一个贫穷的樵夫在河边砍柴。
这时候河里出现了一个水神,夺过了他的斧头,说:
“这把斧头,是不是你的?”
樵夫一看:“是啊是啊!”
水神把斧头扔在一边,又拿起一个东西问:
“这把斧头,是不是你的?”
樵夫看不清楚,但又怕真的是自己的斧头,只好又答:“是啊是啊!”
水神又把手上的东西扔在一边,拿起第三个东西问:
“这把斧头,是不是你的?”
樵夫还是看不清楚,但是他觉得再这样下去他就没法砍柴了。
于是他又一次答:“是啊是啊!真的是!”
水神看着他,哈哈大笑道:
“你看看你现在的样子,真是丑陋!”
之后就消失了。
 
樵夫觉得很坑爹,他今天不仅没有砍到柴,还丢了一把斧头给那个水神。
于是他准备回家换一把斧头。
回家之后他才发现真正坑爹的事情才刚开始。
水神拿着的的确是他的斧头。
但是不一定是他拿出去的那把,还有可能是水神不知道怎么偷偷从他家里拿走的。
换句话说,水神可能拿走了他的一把,两把或者三把斧头。
 
樵夫觉得今天真是倒霉透了,但不管怎么样日子还得过。
他想统计他的损失。
樵夫的每一把斧头都有一个价值,不同斧头的价值不同。总损失就是丢掉的斧头价值和。
他想对于每个可能的总损失,计算有几种可能的方案。
注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视为一种方案。拿走三把斧头时,(a,b,c),(b,c,a),(c,a,b),(c,b,a),(b,a,c),(a,c,b)视为一种方案。
 

Input

第一行是整数N,表示有N把斧头。
接下来n行升序输入N个数字Ai,表示每把斧头的价值。
 

Output

若干行,按升序对于所有可能的总损失输出一行x y,x为损失值,y为方案数。
 

Sample Input

4
4
5
6
7

Sample Output

4 1
5 1
6 1
7 1
9 1
10 1
11 2
12 1
13 1
15 1
16 1
17 1
18 1
样例解释
11有两种方案是4+7和5+6,其他损失值都有唯一方案,例如4=4,5=5,10=4+6,18=5+6+7.

HINT

所有数据满足:Ai<=40000

题解:发现背包用的上?是不可能的,题目中说的是三把斧头,这是FFT优化生成函数的模板题,
   然后再去重即可。
    

 #include<cstring>
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm> #define pi acos(-1)
#define N 40007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,num,L;
int rev[N*];
struct comp
{
double r,v;
comp(){r=v=0.0;}
comp(double x,double y){r=x,v=y;}
friend inline comp operator+(comp x,comp y){return comp(x.r+y.r,x.v+y.v);}
friend inline comp operator-(comp x,comp y){return comp(x.r-y.r,x.v-y.v);}
friend inline comp operator*(comp x,comp y){return comp(x.r*y.r-x.v*y.v,x.r*y.v+x.v*y.r);}
friend inline comp operator/(comp x,int y){return comp(x.r/y,x.v/y);}
}a[N*],b[N*],c[N*]; void FFT(comp *a,int flag)
{
for (int i=;i<num;i++)
if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=;i<num;i<<=)
{
comp wn=comp(cos(pi/i),flag*sin(pi/i));
for (int j=;j<num;j+=(i<<))
{
comp w=comp(,);
for (int k=;k<i;k++,w=w*wn)
{
comp x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y,a[j+k+i]=x-y;
}
}
}
if (flag==-) for (int i=;i<num;i++) a[i].r/=num;
}
int main()
{
n=read();int up=;
for (int i=;i<=n;i++)
{
int x=read();
a[x].r+=1.0;
b[x*].r+=1.0;
c[x*].r+=1.0;
up=max(up,x*);
}
for (num=;num<=up;num<<=,L++);if (L) L--;
for (int i=;i<num;i++) rev[i]=(rev[i>>]>>)|((i&)<<L);
FFT(a,),FFT(b,),FFT(c,);
for (int i=;i<num;i++)
a[i]=a[i]+a[i]*a[i]/-b[i]/+a[i]*a[i]*a[i]/-a[i]*b[i]/+c[i]/;
FFT(a,-); for (int i=;i<num;i++)
{
int x=(int)(a[i].r+0.5);
if (x==) continue;
printf("%d %d\n",i,x);
}
}

bzoj 3771 Triple FFT 生成函数+容斥的更多相关文章

  1. [BZOJ 3771] Triple(FFT+容斥原理+生成函数)

    [BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...

  2. BZOJ 3771: Triple(FFT+容斥)

    题面 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:&qu ...

  3. BZOJ 3771 Triple FFT+容斥原理

    解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...

  4. bzoj 3771: Triple【生成函数+FFT+容斥原理】

    瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...

  5. bzoj 3771 Triple——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771 把方案作为系数.值作为指数,两项相乘就是系数相乘.指数相加,符合意义. 考虑去重.先自 ...

  6. bzoj 3771 Triple —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771 令多项式的系数是方案数,次数是值: 设 a(x) 为一个物品的多项式,即 a[w[i] ...

  7. BZOJ 3771 Triple ——FFT

    直接暴力卷积+统计就可以了. 去重比较复杂. 其实也不复杂,抄吧! 反正AC了. #include <map> #include <cmath> #include <qu ...

  8. 【BZOJ 3771】 3771: Triple (FFT+容斥)

    3771: Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 547  Solved: 307 Description 我们讲一个悲伤的故事. ...

  9. BZOJ 3771: Triple(生成函数 FFT)

    Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 911  Solved: 528[Submit][Status][Discuss] Description ...

随机推荐

  1. [HDU1512]Monkey King(左偏树)

    用并查集维护猴子们的关系,强壮值用左偏树维护就行了 Code #include <cstdio> #include <algorithm> #include <cstri ...

  2. HBase 增删改查Java API

    1. 创建NameSpaceAndTable package com.HbaseTest.hdfs; import java.io.IOException; import org.apache.had ...

  3. 在WPF中自定义控件(2) UserControl

    原文:在WPF中自定义控件(2) UserControl 在WPF中自定义控件(2) UserControl                                               ...

  4. Android应用开发中的夜间模式实现(一)

    前言 在应用开发中会经常遇到要求实现夜间模式或者主题切换具体例子如下,我会先讲解第一种方法. 夜间模式 知乎 网易新闻 沪江开心词场 Pocket 主题切换 腾讯QQ 新浪微博 我今天主要是详述第一种 ...

  5. idea在Maven Projects中显示灰色的解决办法

    问题描述: 在使用idea的过程中,遇到其中一个maven模块变成灰色,如下所示: 问题解决: 造成这个的原因可能是忽略了maven模块. 可以尝试如下解决方法:在idea中进入Settings–&g ...

  6. Python 3基础教程19-模块导入语法

    本文开始介绍模块导入的一些基本语法,我们现在还在Python自带的IDLE编辑器里写Python代码,如果你要需要一个功能,例如build-in的模块,那么你就需要先导入这个模块,然后才能使用这个模块 ...

  7. JMeter-取样器

    JMeter取样器: 1.右键点击新建的线程组,选择Add---->Sampler---->HTTP Request:(如图) 2.新建取样器之后的界面如图: 3.根据上图中的数字标识解释 ...

  8. 杜绝网上压根没测过就乱写之 《oracle mybatis 返回自增主键 》

    面试过好多人,包括自己也属于这么一个情况: 遇到问题直接去网上查,一般都可以查到解决方案.其中也包括一些基本的面试资料的答案. 其实有很多答案也都是正确的,但是还是存在一些压根就是胡乱抄来的答案,也不 ...

  9. 在阿里云上遇见更好的Oracle(四)

    2016.5.13,北京,第七届数据库技术大会. 从最初的itpub社区,到后来被it168收购,DBA社区的线下聚会发展成2010年第一届数据库技术大会(DTCC).第一届大会汇聚了社区内活跃的各位 ...

  10. (原创)最小生成树之Prim(普里姆)算法+代码详解,最懂你的讲解

    Prim算法 (哈欠)在创建最小生成树之前,让我们回忆一下什么是最小生成树.最小生成树即在一个待权值的图(即网结构)中用一个七拐八绕的折线串连起所有的点,最小嘛,顾名思义,要权值相加起来最小,你当然可 ...