题目

第一问直接板子敲上去

第二问并不明白直接在残量网络上加边的神仙做法

非常显然我们需要让流量加\(k\),那么我们就使得网络里的总流量为\(maxf+k\),\(maxf\)是第一问求出来的最大流

所以搞一个超级源点,向\(1\)连一条流量是\(maxf+k\)费用是\(0\)的边,之后在原来的图的基础上再给每条边加一条流量为\(inf\),费用为相应费用的边

这样让它自己在里面流就必然会流出来\(maxf+k\)的流量

求出最小费用就好了

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define maxn 1005
#define re register
#define LL long long
#define inf 999999999
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
struct E{int v,nxt,w,f;} e[20005];
int d[maxn],vis[maxn],head[maxn];
int n,m,num=1,K,S,T;
int a[5005],b[5005],c[5005],t[5005];
inline void add(int x,int y,int ca,int z){e[++num].v=y;e[num].nxt=head[x];e[num].f=ca,e[num].w=z;head[x]=num;}
inline void C(int x,int y,int ca,int z){add(x,y,ca,z),add(y,x,0,-1*z);}
inline int SPFA()
{
std::queue<int> q;
for(re int i=S;i<=T;i++) d[i]=inf,vis[i]=0;
d[T]=0,vis[T]=1,q.push(T);
while(!q.empty())
{
int k=q.front();q.pop();vis[k]=0;
for(re int i=head[k];i;i=e[i].nxt)
if(e[i^1].f&&d[e[i].v]>d[k]+e[i^1].w)
{
d[e[i].v]=d[k]+e[i^1].w;
if(!vis[e[i].v]) vis[e[i].v]=1,q.push(e[i].v);
}
}
return d[S]<inf;
}
int dfs(int x,int now)
{
if(x==n||!now) return now;
int flow=0,ff;vis[x]=1;
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].f&&!vis[e[i].v]&&d[e[i].v]==d[x]+e[i^1].w)
{
ff=dfs(e[i].v,min(e[i].f,now));
if(ff<=0) continue;
now-=ff,flow+=ff;
e[i].f-=ff,e[i^1].f+=ff;
if(!now) break;
}
return flow;
}
int main()
{
n=read(),m=read(),K=read();S=1,T=n;
int x,y,ca,z,ans=0,tot=0,Mf=0;
for(re int i=1;i<=m;i++)
x=read(),y=read(),ca=read(),z=read(),C(x,y,ca,0),a[i]=x,b[i]=y,c[i]=ca,t[i]=z;
while(SPFA())
{
vis[T]=1;
while(vis[T])
{
for(re int i=S;i<=T;i++) vis[i]=0;
int F=dfs(S,inf);
ans+=F;
}
}
printf("%d ",ans);
num=1,memset(head,0,sizeof(head)),memset(e,0,sizeof(e));
for(re int i=1;i<=m;i++) C(a[i],b[i],inf,t[i]),C(a[i],b[i],c[i],0);
S=0,C(S,1,ans+K,0);ans=0;
while(SPFA())
{
vis[T]=1;
while(vis[T])
{
for(re int i=S;i<=T;i++) vis[i]=0;
int F=dfs(S,inf);
ans+=F*d[S];
}
}
printf("%d\n",ans);
return 0;
}

【[ZJOI2010]网络扩容】的更多相关文章

  1. 【题解】Luogu P2604 [ZJOI2010]网络扩容

    原题传送门:P2604 [ZJOI2010]网络扩容 这题可以说是板题 给你一个图,先让你求最大流 再告诉你,每条边可以花费一些代价,使得流量加一 问至少花费多少代价才能使最大流达到k 解法十分简单 ...

  2. 洛谷 P2604 [ZJOI2010]网络扩容 解题报告

    P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...

  3. [Luogu 2604] ZJOI2010 网络扩容

    [Luogu 2604] ZJOI2010 网络扩容 第一问直接最大流. 第二问,添加一遍带费用的边,边权 INF,超级源点连源点一条容量为 \(k\) 的边来限流,跑费用流. 大约是第一次用 nam ...

  4. ZJOI2010网络扩容

    无限orz hzwer神牛…… 第一问很简单,按数据建图,然后一遍最大流算法即可.     第二问则需要用最小费用最大流算法,主要是建图,那么可以从第一问的残留网络上继续建图,对残留网络上的每一条边建 ...

  5. BZOJ1834[ZJOI2010]网络扩容——最小费用最大流+最大流

    题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求:  1.在不扩容的情况下,1到N的最大流:  2.将1到N的最大流增加K所需的最小扩容费用 ...

  6. 1834. [ZJOI2010]网络扩容【费用流】

    Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求:  1.在不扩容的情况下,1到N的最大流:  2.将1到N的最大流增加K所需 ...

  7. BZOJ1834:[ZJOI2010]网络扩容——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1834 https://www.luogu.org/problemnew/show/P2604#sub ...

  8. [洛谷P2604][ZJOI2010]网络扩容

    题目大意:给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小费用. 题解 ...

  9. bzoj1834 [ZJOI2010]网络扩容

    Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的 ...

  10. [ZJOI2010]网络扩容

    OJ题号: BZOJ1834.洛谷2604 思路: 对于第一问,直接跑一遍最大流即可. 对于第二问,将每条边分成两种情况,即将每条边拆成两个: 不需扩容,即残量大于零时,相当于这条边费用为$0$: 需 ...

随机推荐

  1. apache ftpserver外网访问配置

    apache ftpserver搭建ftp服务非常简单,若只是内网访问,几乎不需要配置,直接启动即可.但若需要外网访问,则需要注意以下几点. 1.若是外网访问,主动模式是不行的,因为客户端报告给服务器 ...

  2. 6.ConcurrentHashMap jdk1.7

    6.1 hash算法 就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值.这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所 ...

  3. Centos 7 如何卸载docker

    1.[root@localhost ~]# rpm -qa|grep docker docker.x86_64 2:1.12.6-16.el7.centos @extras docker-client ...

  4. GCD - Extreme(欧拉函数变形)

    题目链接:https://vjudge.net/problem/UVA-11426 题目大意: 给出整数n∈[2,4000000],求解∑gcd(i,j),其中(i,j)满足1≤i<j≤n. 的 ...

  5. Angular4+NodeJs+MySQL 入门-06 接口配置

    在上篇中说了怎么调用接口,这篇就来说说,接口配置吧. 后端是用NodeJS来写的,由于写后台(以前用的是C#语言)的时候,大部操作都在是对数据库表的增.删.改.查操作, 比如:根据查询出来的数据,然后 ...

  6. (转) shell实例手册

    shell实例手册 1文件{ touch file              # 创建空白文件rm -rf 目录名           # 不提示删除非空目录(-r:递归删除 -f强制)dos2uni ...

  7. vue生命周期及使用 && 单文件组件下的生命周期

    生命周期钩子 这篇文章主要记录与生命周期相关的问题. 之前,我们讲到过生命周期,如下所示: 根据图示我们很容易理解vue的生命周期: js执行到new Vue() 后,即进入vue的beforeCre ...

  8. mongodb随机查询一条记录的正确方法!

    关于从mongodb库中随机取出一条记录的方法的博文很多,其中都提到了下面三种方法: 1.skip过随机数量的记录. DBCursor cursor = coll.find(query); int r ...

  9. IntelliJ IDEA 使用 LiveEdit 插件实现实时可视化前端开发

    之前因为公司很多都是C#后台项目,所以一直用的Visual Studio开发.而在VS里会自带实时刷新功能,即:在IDE中修改的CSS代码会同步反映在页面上,而不用我们手动F5刷新. 先在因为在考虑做 ...

  10. poj 1080 ——Human Gene Functions——————【最长公共子序列变型题】

    Human Gene Functions Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17805   Accepted:  ...