【atcoder】All Your Paths are Different Lengths[arc102D](乱搞)
题目传送门:https://arc102.contest.atcoder.jp/tasks/arc102_b
这道题有点毒瘤啊,罚时上天。。
显然若$ l=2^n $那么就可以直接二进制拆分,但是如果不满足这个要求就有点难办了。。。
但是我们可以按照数位dp的那个树形结构一样,把整个区间$ [0,l) $拆成多个满足二进制拆分的结构(在树上则表现为满二叉树),然后在树根对应的位置额外连边补足权值就行了。(数位dp不懂的可以在这里看:初探数位dp - QuartZ_Z - 博客园,其他细节可以看代码,这题我因为细节wa3。。。)
代码:
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#define ll long long
#define ull unsigned long long
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define lowbit(x) (x& -x)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define eps 1e-18
#define maxn 100010
inline ll read(){ll tmp=; char c=getchar(),f=; for(;c<''||''<c;c=getchar())if(c=='-')f=-; for(;''<=c&&c<='';c=getchar())tmp=(tmp<<)+(tmp<<)+c-''; return tmp*f;}
inline ll power(ll a,ll b){ll ans=; for(;b;b>>=){if(b&)ans=ans*a%mod; a=a*a%mod;} return ans;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void swap(int &a,int &b){int tmp=a; a=b; b=tmp;}
using namespace std;
int x[],y[],d[];
int a[],base[];
int n,m,l;
int main()
{
l=read();
if(l<=){//特判是因为若l<=2,下面建图是时图只有一个点,无法连边
printf("2 %d\n",l);
for(int i=;i<l;i++)
printf("1 2 %d\n",i);
return ;
}
int len=;
while(<<len<=l)++len;
n=len; m=;
for(int i=;i<len-;i++){//二进制拆分
x[++m]=i+; y[m]=i+; d[m]=;
x[++m]=i+; y[m]=i+; d[m]=<<i;
}
for(int i=len-;i>=;i--)
if(l&(<<i)){//其实和数位dp一样啦
x[++m]=i+; y[m]=n; d[m]=l>>(i+)<<(i+);
}
printf("%d %d\n",n,m);
for(int i=;i<=m;i++)
printf("%d %d %d\n",x[i],y[i],d[i]);
return ;
}
arc102D
【atcoder】All Your Paths are Different Lengths[arc102D](乱搞)的更多相关文章
- Atcoder Grand Contest 032 E - Modulo Pairing(乱搞+二分)
Atcoder 题面传送门 & 洛谷题面传送门 神仙调整+乱搞题. 首先某些人(including me)一看到最大值最小就二分答案,事实上二分答案对这题正解没有任何启发. 首先将 \(a_i ...
- AtCoder Regular Contest 102 D - All Your Paths are Different Lengths
D - All Your Paths are Different Lengths 思路: 二进制构造 首先找到最大的t,使得2^t <= l 然后我们就能构造一种方法使得正好存在 0 到 2^t ...
- AtCoder Regular Contest 102 (ARC102) D All Your Paths are Different Lengths 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/ARC102D.html 题目传送门 - ARC102D 题意 给定 $L$,请你构造一个节点个数为 $n$ ,边 ...
- ARC102D All Your Paths are Different Lengths
传送门 题目大意 让你构造一个有向图,使得从1到n有L条不同路径且长度分别是0~L-1. 分析 我们不难想到每一对相邻点之间连一条权值为0的边,之后二进制分解,将每一对点之间连一个权值为2^i的边,但 ...
- Atcoder Grand Contest 015 F - Kenus the Ancient Greek(找性质+乱搞)
洛谷题面传送门 & Atcoder 题面传送门 一道难度 Au 的 AGC F,虽然看过题解之后感觉并不复杂,但放在现场确实挺有挑战性的. 首先第一问很简单,只要每次尽量让"辗转相除 ...
- Atcoder Grand Contest 008 E - Next or Nextnext(乱搞+找性质)
Atcoder 题面传送门 & 洛谷题面传送门 震惊,我竟然能独立切掉 AGC E 难度的思维题! hb:nb tea 一道 感觉此题就是找性质,找性质,再找性质( 首先看到排列有关的问题,我 ...
- Atcoder 2159 連結 / Connectivity(并查集+map乱搞)
問題文N 個の都市があり.K 本の道路と L 本の鉄道が都市の間に伸びています. i 番目の道路は pi 番目と qi 番目の都市を双方向に結び. i 番目の鉄道は ri 番目と si 番目の都市を双 ...
- AtCoder Grand Contest 011 E - Increasing Numbers(灵性乱搞)
题意: 当一个整数高位数字总不小于低位数字,或者说写成字符串之后单调不下降,称之为上升数.求一个整数最少能表示为多少个上升数的和.(n<=1e500000) 分析: 考虑那些不下降的数字,一定可 ...
- AtCoder Regular Contest 102
AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...
随机推荐
- 设计模式之备忘录模式(Memento)
备忘录模式(Memento) 在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样以后就可将该对象恢复到原先保存的状态. Originator(发起人):负责创建一个备忘录 ...
- HTML5的兴起与4G网络的出现,能否够终止移动端的持续下滑走向
HTML5的兴起与4G网络的出现,能否够终止移动端的持续下滑走向. 每当大家谈起互联网的未来的时候,多半谈及的是云.大数据.SAAS.仿佛要将一切摒弃.而当谈起移动互联网的时候.却坚持觉得NATIVE ...
- Java_cpu飙升排查
1.现象 top 2.根据上图找到进程ID=28790 3.查找28790下线占用cpu高的线程ID -o THREAD,tid,time 4.根据上图发现线程ID=29161,换算成16进制 pri ...
- python学习【第八篇】python模块
模块与包 模块的概念 在python中一个.py文件就是一个模块. 使用模块可以提高代码的可维护性. 模块分为三种: python标准库 第三方模块 自定义模块 模块的导入方法 1.import语句 ...
- I - Doing Homework again(贪心)
I - Doing Homework again Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & ...
- A - 士兵队列训练问题
A - 士兵队列训练问题 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...
- UI auto程序结构组织方式
UI Auto分三个layer: 1. Object finding – 单独一个类,寻找到控件.因为UI auto最容易改动的就是UI界面,这样全部放到一起就便于统一修改. 2. Task - 对控 ...
- 全局enter回车键js
js实现敲回车键触发事件 document.onkeydown = function(e){ var ev = document.all ? window.event : e; ){ alert(&q ...
- GDI+绘制图形和画刷填充图形
GDI+可以再Windows窗体应用程序中以编程方式绘制图形等. 可以在VS里新建项目-Windows窗体应用程序-建一个窗体.首先引入命名空间using System.Drawing.Imaging ...
- 基于TCP_socket套接字实现远程执行命令
基于tcp的套接字实现远程执行命令的操作 ——客户端敲命令,服务端执行 #服务端 import socket import subprocess phone=socket.socket(socket. ...