(今天碰到的题怎么这么小清新

$n$ 个不相同的点,$q$ 组询问,每次给定 $l,r$,问在 $n$ 个点中,选出 $x$ 个点 $(x \in [l,r])$,用边连起来,能构成多少种不同的树

$n,q \leq 10^6$

sol:

首先知道 $n$ 个点的树有 $n^{n-2}$ 个,因为这题标号不同就算不同,所以 $i$ 个点不同的树有 $C_n^i \times i^{i-2}$

维护一下这东西的前缀和就可以每组询问 $O(1)$ 了

#include <bits/stdc++.h>
#define LL long long
using namespace std;
#define rep(i, s, t) for (register int i = (s), i##end = (t); i <= i##end; ++i)
#define dwn(i, s, t) for (register int i = (s), i##end = (t); i >= i##end; --i)
inline int read() {
int x = , f = ;
char ch = getchar();
for (; !isdigit(ch); ch = getchar())
if (ch == '-')
f = -f;
for (; isdigit(ch); ch = getchar()) x = * x + ch - '';
return x * f;
}
const int maxn = 1e6 + ;
int n, T, mod, num[maxn], fac[maxn], ifac[maxn], cn[maxn], sum[maxn];
inline int ksm(int x, int t) {
if (t < )
return ;
if (t == )
return ;
int res = ;
for (; t; x = 1LL * x * x % mod, t = t >> )
if (t & )
res = 1LL * x * res % mod;
return res;
}
int main() {
n = read(), T = read(), mod = read();
rep(i, , n) num[i] = ksm(i, i - );
ifac[] = fac[] = ;
rep(i, , n) fac[i] = 1LL * fac[i - ] * i % mod;
ifac[n] = ksm(fac[n], mod - );
dwn(i, n - , ) ifac[i] = 1LL * ifac[i + ] * (i + ) % mod;
rep(i, , n) cn[i] = 1LL * (1LL * fac[n] * ifac[n - i] % mod) * ifac[i] % mod;
rep(i, , n) sum[i] = (sum[i - ] + (1LL * cn[i] * num[i] % mod)) % mod;
while (T--) {
int l = read(), r = read();
int ans = (((sum[r] - sum[l - ]) % mod) + mod) % mod;
printf("%d\n", ans);
}
}

loj #6216. 雪花挂饰的更多相关文章

  1. BZOJ4247挂饰

    Description     JOI君有N个装在手机上的挂饰,编号为1...N. JOI君可以将其中的一些装在手机上.     JOI君的挂饰有一些与众不同--其中的一些挂饰附有可以挂其他挂件的挂钩 ...

  2. BZOJ 4247: 挂饰 题解

    Description JOI君有N个装在手机上的挂饰,编号为1...N. JOI君可以将其中的一些装在手机上. JOI君的挂饰有一些与众不同--其中的一些挂饰附有可以挂其他挂件的挂钩.每个挂件要么直 ...

  3. BZOJ 4247 挂饰 背包DP

    4247: 挂饰 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  4. bzoj千题计划197:bzoj4247: 挂饰

    http://www.lydsy.com/JudgeOnline/problem.php?id=4247 先把挂饰按挂钩数量从大到小排序 dp[i][j]前i个挂饰,剩下j个挂钩的最大喜悦值 分挂和不 ...

  5. BZOJ4247 : 挂饰

    首先将挂饰按照挂钩个数从大到小排序,然后DP 设f[i][j]处理完前i个挂饰,还有j个多余挂钩的最大喜悦值,则 f[0][1]=0 f[i][j]=max(f[i-1][max(j-a[i],0)+ ...

  6. 洛谷P4138 挂饰 背包

    正解:背包dp 解题报告: 昂先放链接qwq 感觉还挺妙的,,,真的我觉得我直接做可能是想不到背包的,,,我大概想不出是个背包的QAQ 但是知道是背包之后觉得,哦,好像长得也确实挺背包的吼,而且其实是 ...

  7. bzoj4247挂饰——压缩的动态规划

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4247 1.dp之前要先按挂钩个数从大到小排序,不然挂钩一度用成负的也可能是正确的,不仅脚标难 ...

  8. 【BZOJ4247】挂饰(动态规划)

    [BZOJ4247]挂饰(动态规划) 题面 BZOJ 题解 设\(f[i][j]\)表示前\(i\)个物品中还剩下\(j\)个挂钩时的最大答案. 转移显然是一个\(01\)背包,要么不选:\(f[i] ...

  9. [BZOJ4247]挂饰(DP)

    当最终挂饰集合确定了,一定是先挂挂钩多的在挂挂钩少的. 于是按挂钩从大到小排序,然后就是简单的01背包. #include<cstdio> #include<algorithm> ...

随机推荐

  1. Map中object转换成boolean类型

    Ajax请求查询数据之后,返回的是map类型, resultMap.put("flag", flag); 在接收到数据之后判断时,转换出现异常,导致页面点击按钮之后,页面没有反应, ...

  2. $git学习总结系列(1)——基本用法

    廖雪峰的官方网站:http://www.liaoxuefeng.com/ 本文是学习廖雪峰的官方网站上git教程git基本用法的总结,详细内容可以进入廖雪峰的官方网站查看. 注:本文中的主要内容都是基 ...

  3. LVS 命令使用

    LVS 命令使用 查询命令 ipvsadm -L # 查看lvs负载均衡信息ipvsadm -L -n # -n 查看IP端口ipvsadm -L -c   # 显示当前连接ipvsadm -L -- ...

  4. 《网络对抗》 逆向及Bof基础实践

    <网络对抗>-逆向及Bof基础实践 1 逆向及Bof基础实践说明 1.1 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数, ...

  5. 优美的英文诗歌Beautiful English Poetry

    <When you are old>——<当你老了> --- William Butler Yeats ——威廉·巴特勒·叶芝When you are old and grey ...

  6. 向maven依赖包中添加新的jar包

    今天做一个项目测试的时候正好遇到这个问题,查了网上的资料,有两篇写的挺好,两种方法都试了,都可以. 1.个人觉得第一种简单:http://www.360doc.com/content/14/0517/ ...

  7. SEM竞价数据基本分析方法

    今天我们从账户数据表现来看一看怎样通过数据分析,判断账户出现的问题及解决思路.也欢迎大家提出意见,共同讨论进步. 首先我们从关键词报告来分析数据: 以上图数据为例.(设定该行业CPC均价为8) 先说下 ...

  8. 【atcoder】All Your Paths are Different Lengths[arc102D](乱搞)

    题目传送门:https://arc102.contest.atcoder.jp/tasks/arc102_b 这道题有点毒瘤啊,罚时上天.. 显然若$ l=2^n $那么就可以直接二进制拆分,但是如果 ...

  9. 【bzoj1260】涂色paint[CQOI2007](区间dp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1260 这道题其实和codeforces607B有点像,然而做过原题的我居然没看出来.. ...

  10. Java -- 数据库 多表操作,1对多,多对多,1对1。 基于dbutils框架

    1. 1对多,部门--员工 为例, 多的一方建外键. domain,建立bean对象 public class Department { private String id; private Stri ...