[leetcode-640-Solve the Equation]
Solve a given equation and return the value of x in the form of string "x=#value". The equation contains only '+', '-' operation, the variable xand its coefficient.
If there is no solution for the equation, return "No solution".
If there are infinite solutions for the equation, return "Infinite solutions".
If there is exactly one solution for the equation, we ensure that the value of x is an integer.
Example 1:
Input: "x+5-3+x=6+x-2"
Output: "x=2"
Example 2:
Input: "x=x"
Output: "Infinite solutions"
Example 3:
Input: "2x=x"
Output: "x=0"
Example 4:
Input: "2x+3x-6x=x+2"
Output: "x=-1"
Example 5:
Input: "x=x+2"
Output: "No solution"
Approach #1 Partioning Coefficients [Accepted]
In the current approach, we start by splitting the given equationequation based on = sign. This way, we've separated the left and right hand side of this equation. Once this is done, we need to extract the individual elements(i.e. x's and the numbers) from both sides of the equation. To do so, we make use of breakItfunction, in which we traverse over the given equation(either left hand side or right hand side), and put the separated parts into an array.
Now, the idea is as follows. We treat the given equation as if we're bringing all the x's on the left hand side and all the rest of the numbers on the right hand side as done below for an example.
x+5-3+x=6+x-2
x+x-x=6-2-5+3
Thus, every x in the left hand side of the given equation is treated as positive, while that on the right hand side is treated as negative, in the current implementation. Likewise, every number on the left hand side is treated as negative, while that on the right hand side is treated as positive. Thus, by doing so, we obtain all the x's in the new lhslhs and all the numbers in the new rhsrhs of the original equation.
Further, in case of an x, we also need to find its corresponding coefficients in order to evaluate the final effective coefficient of x on the left hand side. We also evaluate the final effective number on the right hand side as well.
Now, in case of a unique solution, the ratio of the effective rhsrhs and lhslhs gives the required result. In case of infinite solutions, both the effective lhslhs and rhsrhsturns out to be zero e.g. x+1=x+1. In case of no solution, the coefficient of x(lhslhs) turns out to be zero, but the effective number on the rhsrhs is non-zero.
Java
public class Solution {
public String coeff(String x) {
if (x.length() > 1 && x.charAt(x.length() - 2) >= '0' && x.charAt(x.length() - 2) <= '9')
return x.replace("x", "");
return x.replace("x", "1");
}
public String solveEquation(String equation) {
String[] lr = equation.split("=");
int lhs = 0, rhs = 0;
for (String x: breakIt(lr[0])) {
if (x.indexOf("x") >= 0) {
lhs += Integer.parseInt(coeff(x));
} else
rhs -= Integer.parseInt(x);
}
for (String x: breakIt(lr[1])) {
if (x.indexOf("x") >= 0)
lhs -= Integer.parseInt(coeff(x));
else
rhs += Integer.parseInt(x);
}
if (lhs == 0) {
if (rhs == 0)
return "Infinite solutions";
else
return "No solution";
}
return "x=" + rhs / lhs;
}
public List < String > breakIt(String s) {
List < String > res = new ArrayList < > ();
String r = "";
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '+' || s.charAt(i) == '-') {
if (r.length() > 0)
res.add(r);
r = "" + s.charAt(i);
} else
r += s.charAt(i);
}
res.add(r);
return res;
}
}
Complexity Analysis
Time complexity : O(n)O(n). Generating cofficients and findinn $lhsandandrhswill takewilltakeO(n)$$.
Space complexity : O(n)O(n). ArrayList resres size can grow upto nn.
参考:
https://leetcode.com/articles/solve-the-equation/
[leetcode-640-Solve the Equation]的更多相关文章
- 【LeetCode】640. Solve the Equation 解题报告(Python)
[LeetCode]640. Solve the Equation 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...
- LC 640. Solve the Equation
Solve a given equation and return the value of x in the form of string "x=#value". The equ ...
- 【leetcode】640. Solve the Equation
题目如下: 解题思路:本题的思路就是解析字符串,然后是小学时候学的解方程的思想,以"2x+3x-6x+1=x+2",先把左右两边的x项和非x项进行合并,得到"-x+1=x ...
- 640. Solve the Equation
class Solution { public: string solveEquation(string equation) { int idx = equation.find('='); , v1 ...
- ACM:HDU 2199 Can you solve this equation? 解题报告 -二分、三分
Can you solve this equation? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Su ...
- hdu 2199 Can you solve this equation?(二分搜索)
Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- hdu 2199:Can you solve this equation?(二分搜索)
Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- hdu 2199 Can you solve this equation?(高精度二分)
http://acm.hdu.edu.cn/howproblem.php?pid=2199 Can you solve this equation? Time Limit: 2000/1000 MS ...
- HDU 2199 Can you solve this equation? (二分 水题)
Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- hdoj 2199 Can you solve this equation?【浮点型数据二分】
Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
随机推荐
- 数据恢复顾问(DRA)
(1)DRA介绍 数据恢复顾问(Data Recovery Advise)是一个诊断和修复数据库的工具,DRA能够修复数据文件和(某些环境下)控制文件的损坏,它不提供spfile和logfile的修复 ...
- jquery mobile 移动web(3)
可折叠功能块. div 元素的 data-role 属性设置为 collapsible 代码如下: <div data-role="collapsible"> < ...
- Java分享笔记:Java网络编程--TCP程序设计
[1] TCP编程的主要步骤 客户端(client): 1.创建Socket对象,构造方法的形参列表中需要InetAddress类对象和int型值,用来指明对方的IP地址和端口号. 2.通过Socke ...
- [tree]合并果子(哈夫曼树+优先队列)
现在有n堆果子,第i堆有ai个果子.现在要把这些果子合并成一堆,每次合并的代价是两堆果子的总果子数.求合并所有果子的最小代价. Input 第一行包含一个整数T(T<=50),表示数据组数. 每 ...
- ABAP术语-Accounting Document
Accounting Document 原文:http://www.cnblogs.com/qiangsheng/archive/2007/12/12/991731.html Accounting d ...
- PC QQ客服代码
一. <a target="_blank" href="http://wpa.qq.com/msgrd?v=3&uin=QQ号&site=qq&am ...
- STM32CubeMx配置正交编码器遇到的问题
配置时参考了这个哥们的方法: http://www.eemaker.com/stm32cubemx-encoder.html 然后我的配置是这样的 配置是没有问题. 调用时出现了问题. 由于配置完了, ...
- MongoDB修改数据库名,collection名
利用dropDatabase,copyDatabase修改Database名称 db.copyDatabase('old_name', 'new_name'); use old_name db.dro ...
- js bom和dom
一, 前言 到目前为止,我们已经学过了JavaScript的一些简单的语法.但是这些简单的语法,并没有和浏览器有任何交互. 也就是我们还不能制作一些我们经常看到的网页的一些交互,我们需要继续学习BOM ...
- python-time模块、sys模块、os模块以及大量实例
模块 通俗的说模块就把一个已经写好的带有可使用的函数的文件,通过文件名进行导入,然后调用里面的函数等来完成所需功能,模块封装了你需要实现功能的代码,使用者只需调用即可,简化代码量,缩短编程时间. ti ...