Solve a given equation and return the value of x in the form of string "x=#value". The equation contains only '+', '-' operation, the variable xand its coefficient.

If there is no solution for the equation, return "No solution".

If there are infinite solutions for the equation, return "Infinite solutions".

If there is exactly one solution for the equation, we ensure that the value of x is an integer.

Example 1:

Input: "x+5-3+x=6+x-2"
Output: "x=2"

Example 2:

Input: "x=x"
Output: "Infinite solutions"

Example 3:

Input: "2x=x"
Output: "x=0"

Example 4:

Input: "2x+3x-6x=x+2"
Output: "x=-1"

Example 5:

Input: "x=x+2"
Output: "No solution"

Approach #1 Partioning Coefficients [Accepted]

In the current approach, we start by splitting the given equationequation based on = sign. This way, we've separated the left and right hand side of this equation. Once this is done, we need to extract the individual elements(i.e. x's and the numbers) from both sides of the equation. To do so, we make use of breakItfunction, in which we traverse over the given equation(either left hand side or right hand side), and put the separated parts into an array.

Now, the idea is as follows. We treat the given equation as if we're bringing all the x's on the left hand side and all the rest of the numbers on the right hand side as done below for an example.

x+5-3+x=6+x-2

x+x-x=6-2-5+3

Thus, every x in the left hand side of the given equation is treated as positive, while that on the right hand side is treated as negative, in the current implementation. Likewise, every number on the left hand side is treated as negative, while that on the right hand side is treated as positive. Thus, by doing so, we obtain all the x's in the new lhslhs and all the numbers in the new rhsrhs of the original equation.

Further, in case of an x, we also need to find its corresponding coefficients in order to evaluate the final effective coefficient of x on the left hand side. We also evaluate the final effective number on the right hand side as well.

Now, in case of a unique solution, the ratio of the effective rhsrhs and lhslhs gives the required result. In case of infinite solutions, both the effective lhslhs and rhsrhsturns out to be zero e.g. x+1=x+1. In case of no solution, the coefficient of x(lhslhs) turns out to be zero, but the effective number on the rhsrhs is non-zero.

Java

public class Solution {
public String coeff(String x) {
if (x.length() > 1 && x.charAt(x.length() - 2) >= '0' && x.charAt(x.length() - 2) <= '9')
return x.replace("x", "");
return x.replace("x", "1");
}
public String solveEquation(String equation) {
String[] lr = equation.split("=");
int lhs = 0, rhs = 0;
for (String x: breakIt(lr[0])) {
if (x.indexOf("x") >= 0) {
lhs += Integer.parseInt(coeff(x));
} else
rhs -= Integer.parseInt(x);
}
for (String x: breakIt(lr[1])) {
if (x.indexOf("x") >= 0)
lhs -= Integer.parseInt(coeff(x));
else
rhs += Integer.parseInt(x);
}
if (lhs == 0) {
if (rhs == 0)
return "Infinite solutions";
else
return "No solution";
}
return "x=" + rhs / lhs;
}
public List < String > breakIt(String s) {
List < String > res = new ArrayList < > ();
String r = "";
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '+' || s.charAt(i) == '-') {
if (r.length() > 0)
res.add(r);
r = "" + s.charAt(i);
} else
r += s.charAt(i);
}
res.add(r);
return res;
}
}

Complexity Analysis

  • Time complexity : O(n)O(n). Generating cofficients and findinn $lhsandandrhswill takewilltakeO(n)$$.

  • Space complexity : O(n)O(n). ArrayList resres size can grow upto nn.

参考:

https://leetcode.com/articles/solve-the-equation/

[leetcode-640-Solve the Equation]的更多相关文章

  1. 【LeetCode】640. Solve the Equation 解题报告(Python)

    [LeetCode]640. Solve the Equation 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  2. LC 640. Solve the Equation

    Solve a given equation and return the value of x in the form of string "x=#value". The equ ...

  3. 【leetcode】640. Solve the Equation

    题目如下: 解题思路:本题的思路就是解析字符串,然后是小学时候学的解方程的思想,以"2x+3x-6x+1=x+2",先把左右两边的x项和非x项进行合并,得到"-x+1=x ...

  4. 640. Solve the Equation

    class Solution { public: string solveEquation(string equation) { int idx = equation.find('='); , v1 ...

  5. ACM:HDU 2199 Can you solve this equation? 解题报告 -二分、三分

    Can you solve this equation? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Su ...

  6. hdu 2199 Can you solve this equation?(二分搜索)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  7. hdu 2199:Can you solve this equation?(二分搜索)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  8. hdu 2199 Can you solve this equation?(高精度二分)

    http://acm.hdu.edu.cn/howproblem.php?pid=2199 Can you solve this equation? Time Limit: 2000/1000 MS ...

  9. HDU 2199 Can you solve this equation? (二分 水题)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  10. hdoj 2199 Can you solve this equation?【浮点型数据二分】

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

随机推荐

  1. 课时59.体验css(理解)

    我们想做这样一个样式,应该怎么做? 分析: 有一个标题(h1),还有一些段落(p) 标题是居中的,段落也是居中的,所以我们可以设置h标签和p标签居的align属性等于center来实现 标题和段落都有 ...

  2. Django-rest-framework(五)自定义功能

    我们可以在settings.py文件中定义登录,权限,分页,异常等的全局配置,如下所示 REST_FRAMEWORK = { 'DEFAULT_PAGINATION_CLASS': 'utils.pa ...

  3. selenium之Xpath定位

    1. 绝对定位: driver.find_element_by_xpath("/html/body/div[x]/form/input") x 代表第x个 div标签,注意,索引从 ...

  4. Hibernate知识点小结(二)

    一.持久化对象和标识符    1.持久化类        配置完关系后,操作的实体对应的类,成为持久化类 (Customer) 2.持久化类标识符(oid:object id)        3.持久 ...

  5. 第13届景驰-埃森哲杯广东工业大学ACM程序设计大赛--A-跳台阶

    链接:https://www.nowcoder.com/acm/contest/90/A 来源:牛客网 1.题目描述 小明在坐景驰科技研发的无人车到达了目的地. 景驰科技(JingChi.ai)是一家 ...

  6. 利用C++中采用面向对象的思想顺序表

    最近在复习数据结构,我用面向对象的思想实现了顺序表,采用C++语言. 首先建立在Visual Studio 2017中建立一个工程,然后新建一个类SqList.然后会生成SqList.h和SqList ...

  7. javascript--事件对象e的来源、意义、应用及其属性的用法 function(e){}

    在类似于arcgis api for javascript中,经常会遇到function(e),以前一直不懂e是个什么玩意,这种写法啥意思,经过最近一段时间学习,对e有了很深了解,本文通过各种示例,由 ...

  8. JS高度融合入门笔记(二)

    <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>JS ...

  9. 640. Solve the Equation

    class Solution { public: string solveEquation(string equation) { int idx = equation.find('='); , v1 ...

  10. centos7上部署新版 jumpserver 跳板机服务

    CentOS 7 建议在一个纯净的 centos7上进行下面的安装部署 关闭 selinux 和防火墙 [root@jumpserver ~]# setenforce 0 [root@jumpserv ...