(system@127.0.0.1:3306) [trunk]> show variables like '%performance_sch%';
+----------------------------------------------------------+-------+
| Variable_name | Value |
+----------------------------------------------------------+-------+
| performance_schema | ON |

########################################
实验操作脚本:

CREATE TABLE `t1` (
`c1` int(11) NOT NULL DEFAULT '',
`c2` varchar(128) DEFAULT NULL,
`c3` varchar(64) DEFAULT NULL,
`c4` int(11) DEFAULT NULL,
PRIMARY KEY (`c1`),
KEY `ind_c2` (`c2`),
KEY `ind_c4` (`c4`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8; insert into t1 values(1,'a','A',10);
insert into t1 values(2,'b','B',20);
insert into t1 values(3,'b','BB',20);
insert into t1 values(4,'b','BBB',30);
insert into t1 values(5,'b','BBB',40);
insert into t1 values(6,'c','C',50);
insert into t1 values(7,'d','D',60);
mysql> select * from t1;
+----+------+------+------+
| c1 | c2 | c3 | c4 |
+----+------+------+------+
| 1 | a | A | 10 |
| 2 | b | B | 20 |
| 3 | b | BB | 20 |
| 4 | b | BBB | 30 |
| 5 | b | BBB | 40 |
| 6 | c | C | 50 |
| 7 | d | D | 60 |
+----+------+------+------+ set optimizer_trace="enabled=on";
select * from information_schema.optimizer_trace\G
SET optimizer_trace="enabled=off";

#################################################

1、执行以下SQL为什么不走索引ind_c2?

explain select * from t1 where c4=20 and c2='b';
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | t1 | NULL | ref | ind_c2,ind_c4 | ind_c4 | 5 | const | 2 | 57.14 | Using where |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
--c4=40的过滤性比c2好很多
--filtered=57.14
---
"analyzing_roworder_intersect": {
"intersecting_indexes": [
{
"index": "ind_c4",
"index_scan_cost": 1.0011,
"cumulated_index_scan_cost": 1.0011,
"disk_sweep_cost": 1.75,
"cumulated_total_cost": 2.7511,
"usable": true,
"matching_rows_now": 2,
"isect_covering_with_this_index": false,
"chosen": true
},
{
"index": "ind_c2",
"index_scan_cost": 1.1429,
"cumulated_index_scan_cost": 2.144,
"disk_sweep_cost": 1,
"cumulated_total_cost": 3.144,
"usable": true,
"matching_rows_now": 1.3333,
"isect_covering_with_this_index": false,
"chosen": false,
"cause": "does_not_reduce_cost"
}

(system@127.0.0.1:3306) [test]> explain select * from t1 force index(ind_c2) where c4=20 and c2='b';
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | t1 | NULL | ref | ind_c2 | ind_c2 | 387 | const | 4 | 20.00 | Using where |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
--key_len,rowd,filtered

2、where条件中字段c2和c4换个位置,索引还是不走ind_c2?为什么?

explain select * from t1 where c2='b' and c4=20;
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | t1 | NULL | ref | ind_c2,ind_c4 | ind_c4 | 5 | const | 2 | 66.67 | Using where |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
--走index跟字段的顺序位置无关
--filtered=66.67
"analyzing_roworder_intersect": {
"intersecting_indexes": [
{
"index": "ind_c4",
"index_scan_cost": 1.0011,
"cumulated_index_scan_cost": 1.0011,
"disk_sweep_cost": 1.75,
"cumulated_total_cost": 2.7511,
"usable": true,
"matching_rows_now": 2,
"isect_covering_with_this_index": false,
"chosen": true
},
{
"index": "ind_c2",
"index_scan_cost": 1.1429,
"cumulated_index_scan_cost": 2.144,
"disk_sweep_cost": 1,
"cumulated_total_cost": 3.144,
"usable": true,
"matching_rows_now": 1.3333,
"isect_covering_with_this_index": false,
"chosen": false,
"cause": "does_not_reduce_cost"
}

3、如下语句,换个条件c2=\'c\',为什么可以走索引ind_c2?

explain select * from t1 where c2='c' and c4=20;
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | t1 | NULL | ref | ind_c2,ind_c4 | ind_c2 | 387 | const | 1 | 33.33 | Using where |
--filtered=33.33,c2=c的选择性比c4=20要好
"analyzing_roworder_intersect": {
"intersecting_indexes": [
{
"index": "ind_c2",
"index_scan_cost": 1,
"cumulated_index_scan_cost": 1,
"disk_sweep_cost": 1,
"cumulated_total_cost": 2,
"usable": true,
"matching_rows_now": 1,
"isect_covering_with_this_index": false,
"chosen": true
},
{
"index": "ind_c4",
"index_scan_cost": 1.0011,
"cumulated_index_scan_cost": 2.0011,
"disk_sweep_cost": 0,
"cumulated_total_cost": 2.0011,
"usable": true,
"matching_rows_now": 0.3333,
"isect_covering_with_this_index": false,
"chosen": false,
"cause": "does_not_reduce_cost"
}

4、创建复合索引

ALTER TABLE t1 ADD KEY ind_c2_c4(`c2`,`c4`);
1)为什么不走复合索引ind_c2_c4?
explain select * from t1 where c2='b' and c4=20;
+----+-------------+-------+------------+------+-------------------------+--------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+-------------------------+--------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | t1 | NULL | ref | ind_c2,ind_c4,ind_c2_c4 | ind_c4 | 5 | const | 2 | 66.67 | Using where |
"analyzing_range_alternatives": {
"range_scan_alternatives": [
{
"index": "ind_c2",
"ranges": [
"b <= c2 <= b"
],
"index_dives_for_eq_ranges": true,
"rowid_ordered": true,
"using_mrr": false,
"index_only": false,
"rows": 4,
"cost": 5.81,
"chosen": false,
"cause": "cost"
},
{
"index": "ind_c4",
"ranges": [
"20 <= c4 <= 20"
],
"index_dives_for_eq_ranges": true,
"rowid_ordered": true,
"using_mrr": false,
"index_only": false,
"rows": 2,
"cost": 3.41,
"chosen": true
},
{
"index": "ind_c2_c4",
"ranges": [
"b <= c2 <= b AND 20 <= c4 <= 20"
],
"index_dives_for_eq_ranges": true,
"rowid_ordered": true,
"using_mrr": false,
"index_only": false,
"rows": 2,
"cost": 3.41,
"chosen": false,
"cause": "cost"
}
],

"analyzing_roworder_intersect": {
"intersecting_indexes": [
{
"index": "ind_c2_c4",
"index_scan_cost": 1.0476,
"cumulated_index_scan_cost": 1.0476,
"disk_sweep_cost": 1.75,
"cumulated_total_cost": 2.7976,
"usable": true,
"matching_rows_now": 2,
"isect_covering_with_this_index": false,
"chosen": true
},
{
"index": "ind_c4",
"cumulated_total_cost": 2.7976,
"usable": false,
"cause": "does_not_reduce_cost_of_intersect"
},
{
"index": "ind_c2",
"cumulated_total_cost": 2.7976,
"usable": false,
"cause": "does_not_reduce_cost_of_intersect"
}
"chosen_range_access_summary": {
"range_access_plan": {
"type": "range_scan",
"index": "ind_c4",
"rows": 2,
"ranges": [
"20 <= c4 <= 20"
]
},
"rows_for_plan": 2,
"cost_for_plan": 3.41,
"chosen": true

2)为什么又可以走复合索引ind_c2_c4??
explain select c2,c4 from t1 where c2='b' and c4=20;
+----+-------------+-------+------------+------+-------------------------+-----------+---------+-------------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+-------------------------+-----------+---------+-------------+------+----------+-------------+
| 1 | SIMPLE | t1 | NULL | ref | ind_c2,ind_c4,ind_c2_c4 | ind_c2_c4 | 392 | const,const | 2 | 100.00 | Using index |
+----+-------------+-------+------------+------+-------------------------+-----------+---------+-------------+------+----------+-------------+
"analyzing_roworder_intersect": {
"intersecting_indexes": [
{
"index": "ind_c2_c4",
"index_scan_cost": 1.0476,
"cumulated_index_scan_cost": 1.0476,
"disk_sweep_cost": 0,
"cumulated_total_cost": 1.0476,
"usable": true,
"matching_rows_now": 2,
"isect_covering_with_this_index": true,
"chosen": true
}
],
"clustered_pk": {
"clustered_pk_added_to_intersect": false,
"cause": "no_clustered_pk_index"
},
"chosen": false,
"cause": "too_

------
(system@127.0.0.1:3306) [test]> show variables like '%sample%';
+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
| innodb_stats_persistent_sample_pages | 20 |--持久化
| innodb_stats_sample_pages | 8 |--32(xx)
| innodb_stats_transient_sample_pages | 8 |--32
(system@127.0.0.1:3306) [test]> show variables like '%persi%';
+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
| innodb_stats_persistent | ON |
| innodb_stats_persistent_sample_pages | 20 |
(system@127.0.0.1:3306) [test]> show variables like 'innodb_stats_on_metadata';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| innodb_stats_on_metadata | OFF |
SHOW TABLE STATUS、 SHOW INDEX
ANALYZE TABLE

MySQL 优化器的更多相关文章

  1. 0104探究MySQL优化器对索引和JOIN顺序的选择

    转自http://www.jb51.net/article/67007.htm,感谢博主 本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序.表结构和数据准备参考本文最后部分" ...

  2. 机智的MySQL优化器 --- is null

    [介绍] 工作的越久越到的的问题越多,就越是觉得一些“老话”历久弥新:由于最近的学习计划是深入的学习一遍MySQL优化器:学习过程中的一些成果 也会发布到这里,一来是为了整理自己已经知道的和新学到的, ...

  3. 数据库 mysql 优化器原理

    MySQL查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行. 你的最终目标是提交SELECT语句查找数据行,而不是排除数据行.优化器试图排除数据 ...

  4. MySQL优化器cost计算

    记录MySQL 5.5上,优化器进行cost计算的方法. 第一篇: 单表的cost计算 数据结构: 1. table_share: 包含了表的元数据,其中索引部分: key_info:一个key的结构 ...

  5. MySQL优化器 --- index_merge

    [背景] 对于关系数据库中的一张表,通常来说数据页面的总大小要比较某一个索引占用的页面要大的多(上面说的索引是不包涵主键索引的); 更进一步我们可以推导出,如果我们通过读索引就能解决问题,那么它相比读 ...

  6. MySQL优化器功能开关optimizer_switch

    MySQL 8.0新增特性 use_invisible_indexes:是否使用不可见索引,MySQL 8.0新增可以创建invisible索引,这一开关控制优化器是否使用invisible索引,on ...

  7. 《Mysql - 优化器是如何选择索引的?》

    一:概念 - 在 索引建立之后,一条语句可能会命中多个索引,这时,索引的选择,就会交由 优化器 来选择合适的索引. - 优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句. 二: ...

  8. 如何干涉MySQL优化器使用hash join

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. GreatSQL是MySQL的国产分支版本,使用上与MySQL一致. 前言 实验 总结 前言 数据库的优化器相当于人类的大 ...

  9. MySQL优化器不使用索引的情况

    优化器选择不适用索引的情况 有时候,有乎其并没有选择索引而去查找数据,而是通过扫描聚集索引,也就是直接进行全表的扫描来得到数据.这种情况多发生于范围查找.JOIN链接操作等情况.例如 ; 通过SHOW ...

  10. MySQL优化器join顺序

    前一篇介绍了cost的计算方法,下面测试一下两表关联的查询: 测试用例 CREATE TABLE `xpchild` ( `id` int(11) NOT NULL, `name` varchar(1 ...

随机推荐

  1. spring: spittr实例 构建简单的web应用 Test测试用例

    本例为Test,测试上一贴的程序 package spittr.web; import org.junit.Test; import org.springframework.test.web.serv ...

  2. Caffe初试

    1.基本概念 Caffe是一个比较流行的神经网络框架,它支持C++.Python等语言,容易上手,但是代码貌似不怎么好读,等有空我...;) 2.Windows10下的部署 我把我Windows下的编 ...

  3. 【python】使用asyncore进行异步通信

    参考博文:http://blog.csdn.net/livefun/article/details/8721772 参考博文:https://www.cnblogs.com/tomato0906/ar ...

  4. Chrome字体变粗

    如图.解决方案,看看CSS中用了什么字体,卸载某个字体. 因为我装了一个新的字体,CSS中有这个字体的网页都会变粗.删掉这个字体就恢复正常了

  5. eclipse mars4.5安装hibernate开发环境

    在安装hibernate插件过程中遇到下面前三张图片所示的现象是没关系的,只要最后能看到第四张图的结果就说明安装成功,我一开始不知道走了好多弯路.我用的eclipse mars4.5,采用了在线安装的 ...

  6. Java并发编程总结

    基础概念 1.什么是原子操作?在Java Concurrency API中有哪些原子类(atomic classes)?原子操作(atomic operation)意为"不可被中断的一个或一 ...

  7. HTTP返回结果状态码小结

    HTTP 状态码负责表示客户端 HTTP 请求的返回结果.标记服务器端的处理是否正常.通知出现的错误等工作. 一.状态码的类别 状态码的职责是当客户端向服务器端发送请求时,描述返回的请求结果.借助状态 ...

  8. Photoshop脚本指南——Hello World

    作为一个程序猿,每一个东西的学习都是从Hello World开始的,从今天开始,让我们一起进入Photoshop脚本的世界,并以Hello World开始我们的旅程. 1.简介 Photoshop支持 ...

  9. Android 进阶8:进程通信之 Binder 机制浅析

    读完本文你将了解: IBinder Binder Binder 通信机制 Binder 驱动 Service Manager Binder 机制跨进程通信流程 Binder 机制的优点 总结 Than ...

  10. transition 总结

    详情:http://www.css88.com/book/css/properties/transition/transition-property.htm left不能进行transition