做了题还是忍不住要写一发题解,感觉楼下的不易懂啊。

本题解使用latex纯手写精心打造。

题意:求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\)的正整数解总数。

首先,不会线筛素数的先去做下LuoguP3383

开始推导。

\[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}
\]

那么\(\frac{1}{x}\)和\(\frac{1}{y}\)肯定是小于\(\frac{1}{n!}\)的。所以\(x\)和\(y\)肯定都是大于\(n!\)的。

我们令

\[y=n!+k(k∈N^*)
\]

原式变为

\[\frac{1}{x}+\frac{1}{n!+k}=\frac{1}{n!}
\]

等式两边同乘\(x*n!*(n!+k)\)得

\[n!(n!+k)+xn!=x(n!+k)
\]

移项得

\[n!(n!+k)=x(n!+k)-xn!=xk
\]

\[x=\frac{n!(n!+k)}{k}=\frac{(n!)^2}{k}+n!
\]

∵\(x\)为正整数

∴\(\frac{(n!)^2}{k}+n!\)为正整数,\(\frac{(n!)^2}{k}\)为正整数,因为\(k=y-n!\),而\(y\)是可以取到任意正整数的,所以\(k\)也可以取到任意正整数,所以这道题就变成了求\((n!)^2\)的约数个数。

求约数个数,线筛的时候我们已经预处理出每个数的最小质因子,直接\(for\)一遍\(1-n\),不断除以它的最小公约数,直到变成1为止,同时每次都使记录质因数的指数的数组++,这就完成了对每个数分解质因数,最后把这些质因数的指数+1乘起来就行了。时间复杂度\(O(nlogn)\)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define rep(i,m,n) for(int i=m;i<=n;++i)
#define dop(i,m,n) for(int i=m;i>=n;--i)
#define lowbit(x) (x&(-x))
#define INF 2147483647
using namespace std;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-')w = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0',ch = getchar();
return s * w;
}
const int MAXN = 1000010;
const int MOD = 1000000007;
int n;
int c[MAXN], v[MAXN], prime[MAXN], cnt;
int ans = 1;
int main(){
n = read();
/////////
rep(i, 2, n){
if(!v[i]){
v[i] = i;
prime[++cnt] = i;
}
rep(j, 1, cnt){
if(prime[j] > v[i] || prime[j] > n / i) break;
v[i * prime[j]] = prime[j];
}
}
///////线筛
rep(i, 1, n){ //求质因数指数
for(int j = i; j != 1; j /= v[j])
c[v[j]]++;
}
rep(i, 1, n) ans = (long long)ans * (c[i] * 2 + 1) % MOD; //long long保存中间过程,既节省了时间、空间复杂度,又不会溢出
printf("%d\n", ans);
return 0;
}

【洛谷 P1445】 [Violet]樱花(唯一分解定理)的更多相关文章

  1. 洛谷P1445 [Violet] 樱花 (数学)

    洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...

  2. 【题解】洛谷P1445 [Violet]樱花 (推导+约数和)

    洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x​+1/(n!+k)​=1 ...

  3. 洛谷 P1445 [Violet]樱花

    #include<cstdio> #include<algorithm> #include<cstring> #include<vector> usin ...

  4. BZOJ2721或洛谷1445 [Violet]樱花

    BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...

  5. bzoj2721 / P1445 [Violet]樱花

    P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...

  6. Luogu P1445[Violet]樱花/P4167 [Violet]樱花

    Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...

  7. P1445 [Violet]樱花

    传送门 看到题目就要开始愉快地推式子 原式 $\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$ $\rightarrow \frac{x+y}{xy}=\frac{1}{n! ...

  8. 洛谷P1445 樱花

    题意:求 1/x + 1/y = 1/(n!)的正整数解个数. 解:神仙...... 设(n!) = t 打表发现 x ∈ [t+1 , 2t] 反正就是拿到式子以后乱搞一通然后发现得到了这个很美观的 ...

  9. 洛谷 P4169 [Violet]天使玩偶/SJY摆棋子 解题报告

    P4169 [Violet]天使玩偶/SJY摆棋子 题目描述 \(Ayu\)在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,\(Ayu\) 却忘了她把天使玩偶埋在了哪 ...

随机推荐

  1. NSDictionary底层实现原理

    一言以蔽之:在OC中NSDictionary是使用hash表来实现key和value的映射和存储的. 那么问题来了什么是hash表呢? 哈希表(hash表): 又叫做散列表,是根据关键码值(key v ...

  2. 0.爬虫 urlib库讲解 urlopen()与Request()

    # 注意一下 是import urllib.request 还是 form urllib import request 0. urlopen() 语法:urllib.request.urlopen(u ...

  3. 语法测试cnblogs使用Markdown

    参考自作业部落Cmd Markdown 编辑器 https://www.zybuluo.com 欢迎使用 Cmd Markdown 编辑阅读器 什么是 Markdown Markdown 是一种方便记 ...

  4. JavaSE复习(七)Stream流和方法引用

    Stream流 全新的Stream概念,用于解决已有集合类库既有的弊端. 传统集合的多步遍历代码 几乎所有的集合(如 Collection 接口或 Map 接口等)都支持直接或间接的遍历操作.而当我们 ...

  5. eclipse快捷键(复制自己看)

    1几个最重要的快捷键 代码助手:Ctrl+Space(简体中文操作系统是Alt+/)快速修正:Ctrl+1单词补全:Alt+/打开外部Java文档:Shift+F2 显示搜索对话框:Ctrl+H快速O ...

  6. 【积累】根据CheckBox的不选中 ,用JQuery 清除 RidaoButtonList 的选中项

    如题,项目要求无刷新更新数据. 1)Web页面布局 Html以及效果图  

  7. DES(Data Encryption Standard)数据加密标准

    DES算法入口参数 DES算法的入口参数有三个:Key.Data.Mode.其中Key为7个字节共56位,是DES算法的工作密钥.Data为8个字节64位,是要被加密或解密的数据;Mode为DES的工 ...

  8. BZOJ4419 SHOI2013发微博(平衡树)

    好友状态的变化次数不会超过m,于是考虑暴力,对每个人记录其好友关系的变化,通过前缀和计算贡献.这需要查询一段前缀时间内某人发的微博数量,可以离线建一棵绝对平衡的平衡树.事实上完全可以线性. #incl ...

  9. 2017 Multi-University Training Contest - Team 3 Kanade's trio(字典树+组合数学)

    题解: 官方题解太简略了orz 具体实现的方式其实有很多 问题就在于确定A[j]以后,如何找符合条件的A[i] 这里其实就是要提前预处理好 我是倒序插入点的,所以要沿着A[k]爬树,找符合的A[i] ...

  10. Netscaler重置密码的方法

    Netscaler重置密码的方法 http://blog.51cto.com/caojin/1898401 有时候我们会碰到忘记Netscaler的密码,或接手别人的设备而不知道密码的情况.在这种情况 ...