做了题还是忍不住要写一发题解,感觉楼下的不易懂啊。

本题解使用latex纯手写精心打造。

题意:求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\)的正整数解总数。

首先,不会线筛素数的先去做下LuoguP3383

开始推导。

\[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}
\]

那么\(\frac{1}{x}\)和\(\frac{1}{y}\)肯定是小于\(\frac{1}{n!}\)的。所以\(x\)和\(y\)肯定都是大于\(n!\)的。

我们令

\[y=n!+k(k∈N^*)
\]

原式变为

\[\frac{1}{x}+\frac{1}{n!+k}=\frac{1}{n!}
\]

等式两边同乘\(x*n!*(n!+k)\)得

\[n!(n!+k)+xn!=x(n!+k)
\]

移项得

\[n!(n!+k)=x(n!+k)-xn!=xk
\]

\[x=\frac{n!(n!+k)}{k}=\frac{(n!)^2}{k}+n!
\]

∵\(x\)为正整数

∴\(\frac{(n!)^2}{k}+n!\)为正整数,\(\frac{(n!)^2}{k}\)为正整数,因为\(k=y-n!\),而\(y\)是可以取到任意正整数的,所以\(k\)也可以取到任意正整数,所以这道题就变成了求\((n!)^2\)的约数个数。

求约数个数,线筛的时候我们已经预处理出每个数的最小质因子,直接\(for\)一遍\(1-n\),不断除以它的最小公约数,直到变成1为止,同时每次都使记录质因数的指数的数组++,这就完成了对每个数分解质因数,最后把这些质因数的指数+1乘起来就行了。时间复杂度\(O(nlogn)\)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define rep(i,m,n) for(int i=m;i<=n;++i)
#define dop(i,m,n) for(int i=m;i>=n;--i)
#define lowbit(x) (x&(-x))
#define INF 2147483647
using namespace std;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-')w = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0',ch = getchar();
return s * w;
}
const int MAXN = 1000010;
const int MOD = 1000000007;
int n;
int c[MAXN], v[MAXN], prime[MAXN], cnt;
int ans = 1;
int main(){
n = read();
/////////
rep(i, 2, n){
if(!v[i]){
v[i] = i;
prime[++cnt] = i;
}
rep(j, 1, cnt){
if(prime[j] > v[i] || prime[j] > n / i) break;
v[i * prime[j]] = prime[j];
}
}
///////线筛
rep(i, 1, n){ //求质因数指数
for(int j = i; j != 1; j /= v[j])
c[v[j]]++;
}
rep(i, 1, n) ans = (long long)ans * (c[i] * 2 + 1) % MOD; //long long保存中间过程,既节省了时间、空间复杂度,又不会溢出
printf("%d\n", ans);
return 0;
}

【洛谷 P1445】 [Violet]樱花(唯一分解定理)的更多相关文章

  1. 洛谷P1445 [Violet] 樱花 (数学)

    洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...

  2. 【题解】洛谷P1445 [Violet]樱花 (推导+约数和)

    洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x​+1/(n!+k)​=1 ...

  3. 洛谷 P1445 [Violet]樱花

    #include<cstdio> #include<algorithm> #include<cstring> #include<vector> usin ...

  4. BZOJ2721或洛谷1445 [Violet]樱花

    BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...

  5. bzoj2721 / P1445 [Violet]樱花

    P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...

  6. Luogu P1445[Violet]樱花/P4167 [Violet]樱花

    Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...

  7. P1445 [Violet]樱花

    传送门 看到题目就要开始愉快地推式子 原式 $\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$ $\rightarrow \frac{x+y}{xy}=\frac{1}{n! ...

  8. 洛谷P1445 樱花

    题意:求 1/x + 1/y = 1/(n!)的正整数解个数. 解:神仙...... 设(n!) = t 打表发现 x ∈ [t+1 , 2t] 反正就是拿到式子以后乱搞一通然后发现得到了这个很美观的 ...

  9. 洛谷 P4169 [Violet]天使玩偶/SJY摆棋子 解题报告

    P4169 [Violet]天使玩偶/SJY摆棋子 题目描述 \(Ayu\)在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,\(Ayu\) 却忘了她把天使玩偶埋在了哪 ...

随机推荐

  1. Python的文件输入输出,如何追加内容,读取内容,添加内容

    python主要的文件打开的几种访问模式 模式可以为读模式('r').写模式('w')或追加模式('a'),当然还有rb.wb.ab.r+.w+.a+.rb+.wb+.ab+,然而实际从代码上我也没看 ...

  2. C++学习005-循环

    C++在循环方面,感觉个C没有身边么区别 while循环 for循环 do while循环 其实 使用Goto也可以写个循环 编写环境vs2015 1. while循环 int main() { in ...

  3. 关于2018年东南大学Robomaster算法组工作的总结

    笔者在写作时,为东南大学机器人俱乐部下Robomaster大赛SUPER NOVA战队算法组的负责人之一(这名字写起来好长).而SUPER NOVA战队则于2018年5月19日正式结束了中部分区赛,获 ...

  4. AGV小车典型设计算法及应用

    1. AGV小车的发展背景 在现代化工业的发展中,提倡高效,快速,可靠,提倡将人从简单的工作中解放出来.机器人逐渐替代了人出现在各个工作岗位上.机器人具有可编程.可协调作业和基于传感器控制等特点,自动 ...

  5. Annoy解析

    Annoy是高维空间求近似最近邻的一个开源库. Annoy构建一棵二叉树,查询时间为O(logn). Annoy通过随机挑选两个点,并使用垂直于这个点的等距离超平面将集合划分为两部分. 如图所示,图中 ...

  6. 时间动态协同过滤(TimeSVD++)

    原作者 原论文地址 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.379.1951&rep=rep1&type=pd ...

  7. DM8168通过GPMC接口与FPGA高速数据通信实现

    硬件:TI达芬奇TMS320DM8168(以下简称DSP).EP4CE6E22C8N(以下简称FPGA) 软件:linux-2.6.37 转载请注明出处- http://www.cnblogs.com ...

  8. 【转】C++ const用法 尽可能使用const

    http://www.cnblogs.com/xudong-bupt/p/3509567.html C++ const 允许指定一个语义约束,编译器会强制实施这个约束,允许程序员告诉编译器某值是保持不 ...

  9. mysql yearweek修改开始日期

    MySQL 的yearweek函数默认是从周日~周六,需求需要从周一到周日,看了MySQL的文档后,按照如下使用即可更改开始日期. http://dev.mysql.com/doc/refman/5. ...

  10. Java Web开发之路(一)——环境配置

    1. 下载JDK(Java Development Kit)工具包.其中包括运行Java程序所必须的JRE环境及开发过程中常用的库文件. (JDK与JRE的关系: JDK是Java的开发环境,在编写J ...