【洛谷 P1445】 [Violet]樱花(唯一分解定理)
做了题还是忍不住要写一发题解,感觉楼下的不易懂啊。
本题解使用latex纯手写精心打造。
题意:求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\)的正整数解总数。
首先,不会线筛素数的先去做下LuoguP3383。
开始推导。
\]
那么\(\frac{1}{x}\)和\(\frac{1}{y}\)肯定是小于\(\frac{1}{n!}\)的。所以\(x\)和\(y\)肯定都是大于\(n!\)的。
我们令
\]
原式变为
\]
等式两边同乘\(x*n!*(n!+k)\)得
\]
移项得
\]
∴
\]
∵\(x\)为正整数
∴\(\frac{(n!)^2}{k}+n!\)为正整数,\(\frac{(n!)^2}{k}\)为正整数,因为\(k=y-n!\),而\(y\)是可以取到任意正整数的,所以\(k\)也可以取到任意正整数,所以这道题就变成了求\((n!)^2\)的约数个数。
求约数个数,线筛的时候我们已经预处理出每个数的最小质因子,直接\(for\)一遍\(1-n\),不断除以它的最小公约数,直到变成1为止,同时每次都使记录质因数的指数的数组++,这就完成了对每个数分解质因数,最后把这些质因数的指数+1乘起来就行了。时间复杂度\(O(nlogn)\)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define rep(i,m,n) for(int i=m;i<=n;++i)
#define dop(i,m,n) for(int i=m;i>=n;--i)
#define lowbit(x) (x&(-x))
#define INF 2147483647
using namespace std;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-')w = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0',ch = getchar();
return s * w;
}
const int MAXN = 1000010;
const int MOD = 1000000007;
int n;
int c[MAXN], v[MAXN], prime[MAXN], cnt;
int ans = 1;
int main(){
n = read();
/////////
rep(i, 2, n){
if(!v[i]){
v[i] = i;
prime[++cnt] = i;
}
rep(j, 1, cnt){
if(prime[j] > v[i] || prime[j] > n / i) break;
v[i * prime[j]] = prime[j];
}
}
///////线筛
rep(i, 1, n){ //求质因数指数
for(int j = i; j != 1; j /= v[j])
c[v[j]]++;
}
rep(i, 1, n) ans = (long long)ans * (c[i] * 2 + 1) % MOD; //long long保存中间过程,既节省了时间、空间复杂度,又不会溢出
printf("%d\n", ans);
return 0;
}
【洛谷 P1445】 [Violet]樱花(唯一分解定理)的更多相关文章
- 洛谷P1445 [Violet] 樱花 (数学)
洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...
- 【题解】洛谷P1445 [Violet]樱花 (推导+约数和)
洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x+1/(n!+k)=1 ...
- 洛谷 P1445 [Violet]樱花
#include<cstdio> #include<algorithm> #include<cstring> #include<vector> usin ...
- BZOJ2721或洛谷1445 [Violet]樱花
BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...
- bzoj2721 / P1445 [Violet]樱花
P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...
- Luogu P1445[Violet]樱花/P4167 [Violet]樱花
Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...
- P1445 [Violet]樱花
传送门 看到题目就要开始愉快地推式子 原式 $\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$ $\rightarrow \frac{x+y}{xy}=\frac{1}{n! ...
- 洛谷P1445 樱花
题意:求 1/x + 1/y = 1/(n!)的正整数解个数. 解:神仙...... 设(n!) = t 打表发现 x ∈ [t+1 , 2t] 反正就是拿到式子以后乱搞一通然后发现得到了这个很美观的 ...
- 洛谷 P4169 [Violet]天使玩偶/SJY摆棋子 解题报告
P4169 [Violet]天使玩偶/SJY摆棋子 题目描述 \(Ayu\)在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,\(Ayu\) 却忘了她把天使玩偶埋在了哪 ...
随机推荐
- spring boot 中文文档地址
spring boot 中文文档地址 http://oopsguy.com/documents/springboot-docs/1.5.4/index.html Spring Boot 参考指 ...
- jenkins安全内容配置策略
有时我们使用HTML Publisher Plugin插件时,在jenkins点开html report,会发现没有带任何的css或js样式,这是因为Jenkins 1.641 / Jenkins 1 ...
- 在Linux上进行mySql安装部署及遇到的问题的解决方法
前提: Linux centOS虚拟机64位 1.首先确认是否已安装过MySQL 方法一:删除原有的MySQL目录: 使用查找语句: whereis mysql find / -name mysql ...
- 第六篇 常用请求协议之post put patch 总结
[转]https://blog.csdn.net/sshfl_csdn 感谢愿意总结分享的人,thanks idempotent 幂等的 如果一个方法重复执行多次,产生的效果是一样的,那就是i ...
- Selenium Grid 环境搭建 碰到的unable to access server
1. Slenenium Grid的环境部署, 前提条件: JDK,JRE都已经安装, selenium的standalone jar包放在磁盘 执行如下命令,报错: 2. 在cmd窗口里切换到jar ...
- 让PC版网站在移动端原样式显示
一般PC网站在移动端显示效果往往和PC版原样式不同,为了在移动端下还原原PC站样式,可以采用以下方式解决: 1) 去掉页头的: <meta name="viewport" c ...
- pandas DataFrame行或列的删除方法
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...
- node gyp的问题
解决 binding.gyp not found (xxx/xxx/xxx) while trying to load binding.gyp 问题 在使用ccap图形验证码模块时遇到这个问题 Err ...
- shell 中的expect 用法
expect一般用于实现用脚本来自动远程登录,对远程机器执行相关操作 测试机上的expect目录一般在/usr/bin/expect路径 下面是从网上查询的用法总结: 1. expect中的判断语句: ...
- maven环境变的配置(复制自己看)
Maven项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告和文档的软件项目管理工具. Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具.由于 Maven 的缺省构建 ...