这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去……

原题意思是求以下式子:
$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\sum\limits_{i=1}^{b}[gcd(i,j)==p]$
首先把p拿下来,得到
$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a/p}\sum\limits_{i=1}^{b/p}[gcd(i,j)==1]$
然后就跟1101一样了,我就复制下。
然后考虑mobius函数的性质:
$\sum\limits_{d|n}\mu(d)=1(n==1),0(n>1)$
所以可以把那个gcd的式子替换下,得到:
$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a/p}\sum\limits_{i=1}^{b/p}\sum\limits_{d|gcd(i,j)}\mu(i)$
我们稍微改写一下这个式子:
$Ans=\sum\limits_{isprime(p)}\sum\limits_{d=1}^{min(a/p,b/p)}\mu(i)\frac{a}{pd}\frac{b}{pd}$
但是此时我们为了减少素数的枚举,可以把pd提取出来:
$\sum\limits_{pd=1}^{n}\sum\limits_{isprime(p),p|pd}\mu(d)\frac{a}{pd}\frac{b}{pd}$
由于这题数据比较水,根据调和级数枚举下质数就能多一个log水过去了……
然后就是下底函数分块。

//题目:bzoj2820 YY的GCD
#include<bits/stdc++.h>
#define N 10000005
#define ll long long
using namespace std;
int mu[N],vis[N],prime[N],cnt;
long long f[N];
void calcmu(){
cnt=;mu[]=;
memset(vis,true,sizeof(vis));
for(int i=;i<N;i++){
if(vis[i])prime[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt;j++){
int t=prime[j]*i;
if(t>N)break;
vis[t]=false;
if(i%prime[j]==){mu[t]=;break;}
mu[t]-=mu[i];
}
}
for(int i=;i<=cnt;i++){
int p=prime[i];
for(int j=;j*p<=N;j++)f[j*p]+=mu[j];
}
for(int i=;i<=N;i++)f[i]+=f[i-];
}
int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return x*f;
}
int main(){
calcmu();int j;int n,m;
int T=read();
while(T--){
ll ans=;n=read();m=read();
if(n>m)swap(n,m);
for(int i=;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=(f[j]-f[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}

【反演复习计划】【bzoj2820】YY的GCD的更多相关文章

  1. BZOJ2820 YY的GCD 【莫比乌斯反演】

    BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...

  2. [BZOJ2820]YY的GCD

    [BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  3. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  4. BZOJ2820:YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  5. Bzoj-2820 YY的GCD Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...

  6. 【莫比乌斯反演】BZOJ2820 YY的GCD

    Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...

  7. BZOJ2820: YY的GCD(反演)

    题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...

  8. 【反演复习计划】【51nod1594】Gcd and Phi

    现在感觉反演好多都是套路QAQ…… #include<bits/stdc++.h> using namespace std; ; typedef long long ll; int n,c ...

  9. 【反演复习计划】【bzoj2818】gcd

    就是之前的2820的升级版. 把暴力枚举素数改成预处理就随便A了. #include<bits/stdc++.h> #define N 10000005 #define ll long l ...

随机推荐

  1. Hadoop伪分布式集群

    一.HDFS伪分布式环境搭建 Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点.但同时, ...

  2. LightGBM的算法介绍

    LightGBM算法的特别之处 自从微软推出了LightGBM,其在工业界表现的越来越好,很多比赛的Top选手也掏出LightGBM上分.所以,本文介绍下LightGBM的特别之处. LightGBM ...

  3. 局部敏感哈希LSH

    之前介绍了Annoy,Annoy是一种高维空间寻找近似最近邻的算法(ANN)的一种,接下来再讨论一种ANN算法,LSH局部敏感哈希. LSH的基本思想是: 原始空间中相邻的数据点通过映射或投影变换后, ...

  4. Cassandra - Insert after Delete fails silently

    在delete一条数据后,再insert 相同内容的数据,结果看起来是成功的,但是当你去查找这个数据,却没有任何内容,整个过程并且没有任何异常提示. 这往往发生在单元测试的时候,我们反复清理和写入数据 ...

  5. Caused by: redis.clients.jedis.exceptions.JedisDataException: WRONGTYPE Operation against a key holding the wrong kind of value

    对错误类型key的操作,也就是说redis中没有你当前操作的这个key,而你用这个key去执行某些操作!检查key是否正确

  6. [CERC2017]Intrinsic Interval——扫描线+转化思想+线段树

    [CERC2017]Intrinsic Interval https://www.luogu.org/blog/ywycasm/solution-p4747# 这种“好的区间”,见得还是比较多的了. ...

  7. 【BZOJ 3551】[ONTAK2010] Peaks加强版 Kruskal重构树+树上倍增+主席树

    这题真刺激...... I.关于Kruskal重构树,我只能开门了,不过补充一下那玩意还是一棵满二叉树.(看一下内容之前请先进门坐一坐) II.原来只是用树上倍增求Lca,但其实树上倍增是一种方法,L ...

  8. HDU 5666 快速乘

    Segment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  9. HDU 多校对抗赛 C Triangle Partition

    Triangle Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Oth ...

  10. ubunut14.04 mentohust配置

      1.设置网卡eth0的IP地址和子网掩码 sudo ifconfig eth0 10.162.32.94 netmask 255.0.0.0 将IP地址改为:10.162.32.94,子网掩码改为 ...