洛谷P1122 最大子树和
P1122 最大子树和
题目描述
小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题。一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题。于是当日课后,小明就向老师提出了这个问题:
一株奇怪的花卉,上面共连有N 朵花,共有N-1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的。每朵花都有一个“美丽指数”,该数越大说明这朵花越漂亮,也有“美丽指数”为负数的,说明这朵花看着都让人恶心。所谓“修剪”,意为:去掉其中的一条枝条,这样一株花就成了两株,扔掉其中一株。经过一系列“修剪“之后,还剩下最后一株花(也可能是一朵)。老师的任务就是:通过一系列“修剪”(也可以什么“修剪”都不进行),使剩下的那株(那朵)花卉上所有花朵的“美丽指数”之和最大。
老师想了一会儿,给出了正解。小明见问题被轻易攻破,相当不爽,于是又拿来问你。
输入输出格式
输入格式:
输入文件maxsum3.in的第一行一个整数N(1 ≤ N ≤ 16000)。表示原始的那株花卉上共N 朵花。
第二行有N 个整数,第I个整数表示第I朵花的美丽指数。
接下来N-1行每行两个整数a,b,表示存在一条连接第a 朵花和第b朵花的枝条。
输出格式:
输出文件maxsum3.out仅包括一个数,表示一系列“修剪”之后所能得到的“美丽指数”之和的最大值。保证绝对值不超过2147483647。
输入输出样例
7
-1 -1 -1 1 1 1 0
1 4
2 5
3 6
4 7
5 7
6 7
3
说明
【数据规模与约定】
对于60%的数据,有N≤1000;
对于100%的数据,有N≤16000。

思路是树形dp没问题,不知道为什么w了里2个点
#include<cstdio>
#include<iostream>
using namespace std;
#define N 21001
int vis[N],u[N],head[N],next[N];
int n,w[N],f[N*];
int tot,res=-0x3f3f3f3f;
void bianbiao(int x,int y){
u[++tot]=y;
next[tot]=head[x];
head[x]=tot;
}
int tree_dp(int x){
int t=;
for(int i=head[x];i;i=next[i]){
if(!vis[u[i]]){
vis[u[i]]=;
t=tree_dp(u[i]);
if(t>) f[x]+=t;
}
}
res=max(res,f[x]);
return f[x];
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&w[i]);f[i]=w[i];
}
for(int i=,x,y;i<n;i++){
scanf("%d%d",&x,&y);
bianbiao(x,y);bianbiao(y,x);
}
vis[]=;
tree_dp();
printf("%d\n",res);
return ;
}
抄上题解的AC代码
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
#define N 16001
int n,w[N],f[N],vis[N]={};//f数组存放以该节点出发的最大子数和,vis表示是否访问过该节点
vector<int>e[N];//用vector存储图
int result=-0x3f3f3f3f;
int tree_dp(int x){
int t=;
for(int i=;i<e[x].size();i++){//遍历与该节点连接的每一条边
int st=e[x][i];//为了方便定义一个引用类型的变量
if(!vis[st]){//子树没被访问过,访问
vis[st]=;
t=tree_dp(st);
if(t>) f[x]+=t;//子树的和>0,加上这棵子树一定比不加更优,反之和<0,不加更优
}
}
result=max(result,f[x]);//记录答案(最大的f[x])
return f[x];//返回当前子树最大和
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",w+i);
f[i]=w[i];
}
for(int i=;i<n;i++){//存储
int t1,t2;
scanf("%d%d",&t1,&t2);
e[t1].push_back(t2);
e[t2].push_back(t1);
}
vis[]=;//每个结点都连通的无根树,所以其实从哪个结点出发都可以
tree_dp();
printf("%d",result);
return ;
}
洛谷P1122 最大子树和的更多相关文章
- 洛谷 P1122 最大子树和
P1122 最大子树和 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的 ...
- 洛谷——P1122 最大子树和
P1122 最大子树和 树形DP,$f[u]$表示以u为根的子树的最大美丽指数 $f[u]+=max(0,f[v])$ 树形DP的基本结构,先搜再DP,这题感觉有点儿贪心的性质,选就要选美丽值> ...
- 洛谷—— P1122 最大子树和
https://www.luogu.org/problem/show?pid=1122 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课 ...
- 洛谷P1122 最大子树和 (树状dp)
题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...
- 洛谷P1122 最大子树和 树形DP初步
小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明就向老师提 ...
- 洛谷P1122最大子树和题解
题目 一道比较好想的树形\(DP\) 完全可以用树形DP的基本思路,递归,然后取最优的方法. \(Code\) #include <iostream> #include <cstri ...
- 【洛谷P1122】最大子树和
题目大意:给定一棵 N 个节点的无根树,点有点权,点权有正有负,求这棵树的联通块的最大权值之和是多少. 题解:设 \(dp[i]\) 表示以 i 为根节点的最大子树和,那么只要子树的 dp 值大于0, ...
- [洛谷P1122][题解]最大子树和
这是一道还算简单的树型dp. 转移方程:f[i]=max(f[j],0) 其中i为任意非叶节点,j为i的一棵子树,而每棵子树都有选或不选两种选择 具体看代码: #include<bits/std ...
- AC日记——最大子树和 洛谷 P1122
题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...
随机推荐
- css3的nth-child选择器的具体探讨
css3的nth-child选择器的具体探讨 前言 在十年前開始的div+css布局兴起之时,我就開始了CSS的学习和实践.在当年,对于CSS选择器,基本上是没有什么选择性的,仅仅有ID选择器,CLA ...
- Unity AssetBundle 踩坑记录
Unity AssetBundle 踩坑记录 editor 下选择什么平台的 ab 加载 Material doesn't have a color property '_Color' UnityEd ...
- LoadRunner测试Google Suggest
Google的搜索框是典型的AJAX应用,用户在输入关键字的同时,前端页面通过xmlhttp与后台服务器动态交互,根据用户输入的关键字查找匹配的内容,向用户提示建议的搜索项,也就是所谓的“google ...
- mui 根据 json 数据动态创建列表
使用 underscore.js 模块解析 Underscore提供了一个轻量级的模板解析函数,它可以帮助我们有效地组织页面结构和逻辑. 实例: <!DOCTYPE html> <h ...
- android-数据库SQLite相关
android平台下的SQLite数据库是一种轻量级数据库,支持标准的SQL语句. 本文将介绍 android数据库的创建 利用sql语句对数据库增删改查 系统api数据库增删改查 数据库的事务 1, ...
- usb转串口模块下载时遇到的问题
ch340g usb转TTL模块,烧写wifi模块ESP8266固件时,为图省事,我直接用的该模块的3.3v电为wifi模块供的电,结果刚一上电就出现串口模块消失(听到噔的一声),电脑设备管理器里就看 ...
- 编辑HTML代码,批量制作博文清单
当积累的博文多了,常想制作一个分类文件夹,方便读者阅读.这能够是一个不轻松且枯燥的工作. 以<关于"IT学子成长指导"专栏及文章文件夹>中文件夹的制作为例.介绍我的&q ...
- C# 获取或设置本地打印机及配置文件操作
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.C ...
- CentOS设置sendmail发件人,让sendmail不显示通过XXX代发
0.有一个十分快速的方法 命令:hostname itzhanzhang.com,但是重启后会失效,于是请接着往下看一劳永逸的方法: 1.设置你的主机名 默认的主机名是类似于“VM_24_76_cen ...
- http加密原理
HTTPS原理 客户端向服务器发送请求 服务器向客户端发送自己的证书 客户端验证证书的有效性(是否是可信用机构CA颁发的证书,如果不是则提出警告)并对比里面信息是否正确,不通过则立刻断开连接 向服务器 ...