P1122 最大子树和

  • 题目提供者该用户不存在
  • 标签动态规划树形结构
  • 难度普及/提高-
  • 通过/提交54/100

提交该题 讨论 题解 记录

题目描述

小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题。一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题。于是当日课后,小明就向老师提出了这个问题:

一株奇怪的花卉,上面共连有N 朵花,共有N-1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的。每朵花都有一个“美丽指数”,该数越大说明这朵花越漂亮,也有“美丽指数”为负数的,说明这朵花看着都让人恶心。所谓“修剪”,意为:去掉其中的一条枝条,这样一株花就成了两株,扔掉其中一株。经过一系列“修剪“之后,还剩下最后一株花(也可能是一朵)。老师的任务就是:通过一系列“修剪”(也可以什么“修剪”都不进行),使剩下的那株(那朵)花卉上所有花朵的“美丽指数”之和最大。

老师想了一会儿,给出了正解。小明见问题被轻易攻破,相当不爽,于是又拿来问你。

输入输出格式

输入格式:

输入文件maxsum3.in的第一行一个整数N(1 ≤ N ≤ 16000)。表示原始的那株花卉上共N 朵花。

第二行有N 个整数,第I个整数表示第I朵花的美丽指数。

接下来N-1行每行两个整数a,b,表示存在一条连接第a 朵花和第b朵花的枝条。

输出格式:

输出文件maxsum3.out仅包括一个数,表示一系列“修剪”之后所能得到的“美丽指数”之和的最大值。保证绝对值不超过2147483647。

输入输出样例

输入样例#1:

7
-1 -1 -1 1 1 1 0
1 4
2 5
3 6
4 7
5 7
6 7
输出样例#1:

3

说明

【数据规模与约定】

对于60%的数据,有N≤1000;

对于100%的数据,有N≤16000。

思路是树形dp没问题,不知道为什么w了里2个点

#include<cstdio>
#include<iostream>
using namespace std;
#define N 21001
int vis[N],u[N],head[N],next[N];
int n,w[N],f[N*];
int tot,res=-0x3f3f3f3f;
void bianbiao(int x,int y){
u[++tot]=y;
next[tot]=head[x];
head[x]=tot;
}
int tree_dp(int x){
int t=;
for(int i=head[x];i;i=next[i]){
if(!vis[u[i]]){
vis[u[i]]=;
t=tree_dp(u[i]);
if(t>) f[x]+=t;
}
}
res=max(res,f[x]);
return f[x];
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&w[i]);f[i]=w[i];
}
for(int i=,x,y;i<n;i++){
scanf("%d%d",&x,&y);
bianbiao(x,y);bianbiao(y,x);
}
vis[]=;
tree_dp();
printf("%d\n",res);
return ;
}

抄上题解的AC代码

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
#define N 16001
int n,w[N],f[N],vis[N]={};//f数组存放以该节点出发的最大子数和,vis表示是否访问过该节点
vector<int>e[N];//用vector存储图
int result=-0x3f3f3f3f;
int tree_dp(int x){
int t=;
for(int i=;i<e[x].size();i++){//遍历与该节点连接的每一条边
int st=e[x][i];//为了方便定义一个引用类型的变量
if(!vis[st]){//子树没被访问过,访问
vis[st]=;
t=tree_dp(st);
if(t>) f[x]+=t;//子树的和>0,加上这棵子树一定比不加更优,反之和<0,不加更优
}
}
result=max(result,f[x]);//记录答案(最大的f[x])
return f[x];//返回当前子树最大和
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",w+i);
f[i]=w[i];
}
for(int i=;i<n;i++){//存储
int t1,t2;
scanf("%d%d",&t1,&t2);
e[t1].push_back(t2);
e[t2].push_back(t1);
}
vis[]=;//每个结点都连通的无根树,所以其实从哪个结点出发都可以
tree_dp();
printf("%d",result);
return ;
}

洛谷P1122 最大子树和的更多相关文章

  1. 洛谷 P1122 最大子树和

    P1122 最大子树和 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的 ...

  2. 洛谷——P1122 最大子树和

    P1122 最大子树和 树形DP,$f[u]$表示以u为根的子树的最大美丽指数 $f[u]+=max(0,f[v])$ 树形DP的基本结构,先搜再DP,这题感觉有点儿贪心的性质,选就要选美丽值> ...

  3. 洛谷—— P1122 最大子树和

    https://www.luogu.org/problem/show?pid=1122 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课 ...

  4. 洛谷P1122 最大子树和 (树状dp)

    题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...

  5. 洛谷P1122 最大子树和 树形DP初步

    小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明就向老师提 ...

  6. 洛谷P1122最大子树和题解

    题目 一道比较好想的树形\(DP\) 完全可以用树形DP的基本思路,递归,然后取最优的方法. \(Code\) #include <iostream> #include <cstri ...

  7. 【洛谷P1122】最大子树和

    题目大意:给定一棵 N 个节点的无根树,点有点权,点权有正有负,求这棵树的联通块的最大权值之和是多少. 题解:设 \(dp[i]\) 表示以 i 为根节点的最大子树和,那么只要子树的 dp 值大于0, ...

  8. [洛谷P1122][题解]最大子树和

    这是一道还算简单的树型dp. 转移方程:f[i]=max(f[j],0) 其中i为任意非叶节点,j为i的一棵子树,而每棵子树都有选或不选两种选择 具体看代码: #include<bits/std ...

  9. AC日记——最大子树和 洛谷 P1122

    题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...

随机推荐

  1. Java8 增强的Future:CompletableFuture(笔记)

    CompletableFuture是Java8新增的一个超大型工具类,为什么说她大呢?因为一方面它实现了Future接口,更重要的是,它实现了CompletionStage接口.这个接口也是Java8 ...

  2. Linux学习笔记 (八)Shell概述

    一.什么是Shell? Shell是一个命令行解释器,它为用户提供了一个向Linux内核发送请求以便运行程序的界面系统级程序,用户可以用Shell来启动,挂起,停止甚至是编写一些程序.Shell还是一 ...

  3. 关于窗体跟随与 PointToScreen

    今日写一段测试代码,实现的功能是,当一个输入框获得焦点时,某个帮助窗体跟随在其下方显示.代码很简单,本来没有什么值得一提的.但实验的时候发现,有些控件能较好地跟随,但有些不能,而且距离十分远. 主要代 ...

  4. HDU 3917 Road constructions(最小割---最大权闭合)

    题目地址:HDU 3917 这题简直神题意... 题目本身就非常难看懂不说..即使看懂了.也对这题意的逻辑感到无语...无论了.. 就依照那题意上说的做吧... 题意:给你n个城市,m个公司.若干条可 ...

  5. jquery 事件,注册 与重复事件处理

    jquery有时候会出现重复注册一个事件的问题,导致点击一个事件,这个事件被重复执行,也就是触发事件的次数有几次, 那么这个事件就会被执行叠加重复几次. 我这边做的一个项目,在某个页面初始化的时候,给 ...

  6. Spring AOP 面向切面编程相关注解

    Aspect Oriented Programming 面向切面编程   在Spring中使用这些面向切面相关的注解可以结合使用aspectJ,aspectJ是专门搞动态代理技术的,所以比较专业.   ...

  7. 架构师-盛大许式伟VS金山张宴

    许式伟:作为系统架构师,您一般会从哪些方面来保证网站的高可用性(降低故障时间)? 张宴:很多因素都会导致网站发生故障,从而影响网站的高可用性,比如服务器硬件故障.软件系统故障.IDC机房故障.程序上线 ...

  8. linux 使用fdisk分区扩容,看介绍命令(未完)

    https://www.cnblogs.com/chenmh/p/5096592.html LVM 逻辑磁盘的一些命令 http://man.linuxde.net/vgcreate

  9. gtx官方example仿真

    一.应用ISE中仿真器ISim 进行仿真: 1.用CORE Generator 产生gtx IP核(重新改IP配置只需在CORE Generator中打开coregen.cgp文件进入点击IP修改参数 ...

  10. 如何给unity3d工程加入依赖的android工程

    最近在忙着接平台的事,需要接入各种各样的android平台sdk来发布.在接sdk的时候遇到了这样的一个情况,有点麻烦,所以纪录一下. 有些sdk的接入是提供jar包,这样的可以简单地将jar包制作成 ...