看到比值先二分答案。于是转化成一个非常裸的树形背包。直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对。这里使用一种更通用的dfs序优化树形背包写法。https://www.cnblogs.com/zzqsblog/p/5537440.html 即设f[i][j]为在dfs序第i~n个点中选j个(所选点不一定连通)的最大权值,考虑是否选择第i个点,如果不选显然f[i][j]=f[i+size][j],否则f[i][j]=f[i+1][j-1]+v[i]。注意dp过程中虽然没有保证所选点都连通,但一旦考虑完一棵子树,子树内部就一定构成连通块了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2510
char getc(){char c=getchar();while (c==||c==||c==) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
const double eps=1E-;
int n,m,w[N],v[N],fa[N],p[N],id[N],size[N],cnt=-,t;
double a[N],f[N][N];
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
id[++cnt]=k;size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]) dfs(edge[i].to),size[k]+=size[edge[i].to];
}
bool check()
{
for (int i=;i<=n+;i++)
for (int j=;j<=m+;j++)
f[i][j]=-;
for (int i=n;i>=;i--)
for (int j=;j<=m+;j++)
f[i][j]=max(f[i+][j-]+a[id[i]],f[i+size[id[i]]][j]);
return f[][m+]>=;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4753.in","r",stdin);
freopen("bzoj4753.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
m=read(),n=read();
double l=,r=,ans=;
for (int i=;i<=n;i++)
{
w[i]=read(),r+=v[i]=read(),fa[i]=read();
addedge(fa[i],i);
}
dfs();
while (l+eps<r)
{
double mid=(l+r)/;
for (int i=;i<=n;i++) a[i]=v[i]-w[i]*mid;
if (check()) ans=mid,l=mid+eps;
else r=mid-eps;
}
printf("%.3f",ans);
return ;
}

BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)的更多相关文章

  1. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  2. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

  3. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  4. Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)

    题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...

  5. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  6. BZOJ 4753 [Jsoi2016]最佳团体 ——01分数规划 树形DP

    要求比值最大,当然用分数规划. 二分答案,转化为选取一个最大的联通块使得它们的和大于0 然后我们直接DP. 复杂度$O(n^2\log {n})$ #include <map> #incl ...

  7. P1642 规划 01分数规划+树形DP

    $ \color{#0066ff}{ 题目描述 }$ 某地方有N个工厂,有N-1条路连接它们,且它们两两都可达.每个工厂都有一个产量值和一个污染值.现在工厂要进行规划,拆除其中的M个工厂,使得剩下的工 ...

  8. bzoj4753[JSOI2016]最佳团体

    题意:01分数规划,但可选的数字之间存在森林形的依赖关系(可以认为0号点是个虚根,因为并不能选). 虽然有森林形的依赖关系,但还是可以套分数规划的思路,二分答案k,判断是否存在一个比值大于k的方案 即 ...

  9. 洛谷$P4322\ [JSOI2016]$最佳团体 二分+$dp$

    正解:二分+$dp$ 解题报告: 传送门$QwQ$ 这题长得好套路嗷,,,就一看就看出来是个$01$分数规划+树形$dp$嘛$QwQ$. 考虑现在二分的值为$mid$,若$mid\leq as$,则有 ...

随机推荐

  1. linux链路聚合

    配置聚合连接(网卡绑定,链路聚合): eth0 ================>>虚拟网卡team eth1 配置聚合连接 [root@Centos7-Server ~]# nmcli ...

  2. 使用DOM对表格进行增删

    ---恢复内容开始--- 声明本文旨在练习dom 其中可以链接数据 或者使用ajax 实现的我全用的dom因为我在学dom. 一. 表格构建 <section id="section_ ...

  3. Plugin was not installed: Cannot download 'https://plugins.jetbrains.com/pluginManager''

    在Android studio中安装插件的时候,提示了类似这种的错误,解决这个问题有以下几步 1.打开Configure->Settings 2.System Settings->Upda ...

  4. 方别《QQ群霸屏技术》,又见《QQ群建群细则》

    规则,时刻变动;QQ群系列,咱们再来一轮. QQ群霸屏技术,你说建群貌似很菜,大家仿佛都知道,其实只知其一不知其二. QQ群类别 群分类,常规的就以下几种. 普通群. 建群随意,偏个性化,一言不合就拉 ...

  5. php实现redis

    <?php //实例化Redis对象 $red=new Redis(); //链接redis服务 $red->connect('localhost','6379'); //具体操作 $re ...

  6. thinkphp-PHP实现pdf导出功能

    Thinkphp框架引用tcpdf插件,插件下载地址:待续... 代码编写前先引入tcpdf整个文件夹到项目目录的ThinkPHP文件夹下 如:/ThinkPHP/Library/Vendor/tcp ...

  7. jenkins邮件发送jmeter接口测试报告

    在Jenkins中配置实现邮件通知,Jenkins提供了两种方式的配置. 一种是Jenkins内置默认的邮件通知,但是它本身有很多局限性,比如它的邮件通知无法提供详细的邮件内容.无法定义发送邮件的格式 ...

  8. (数据科学学习手札18)二次判别分析的原理简介&Python与R实现

    上一篇我们介绍了Fisher线性判别分析的原理及实现,而在判别分析中还有一个很重要的分支叫做二次判别,本文就对二次判别进行介绍: 二次判别属于距离判别法中的内容,以两总体距离判别法为例,对总体G1,, ...

  9. 查询如下课程平均成绩和及格率的百分数(用"1行"显示): 企业管理(001),马克思(002),OO&UML (003),数据库(004)

    SELECT SUM(CASE WHEN C# ='001' THEN score ELSE 0 END)/SUM(CASE C# WHEN '001' THEN 1 ELSE 0 END) AS 企 ...

  10. Scala继承

    override重写 为什么要用override关键字?因为这样更清楚,不容易出错,比如打错字了,就没覆盖成功,但是不会报错 override可以覆盖feild和method class Person ...