看到比值先二分答案。于是转化成一个非常裸的树形背包。直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对。这里使用一种更通用的dfs序优化树形背包写法。https://www.cnblogs.com/zzqsblog/p/5537440.html 即设f[i][j]为在dfs序第i~n个点中选j个(所选点不一定连通)的最大权值,考虑是否选择第i个点,如果不选显然f[i][j]=f[i+size][j],否则f[i][j]=f[i+1][j-1]+v[i]。注意dp过程中虽然没有保证所选点都连通,但一旦考虑完一棵子树,子树内部就一定构成连通块了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2510
char getc(){char c=getchar();while (c==||c==||c==) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
const double eps=1E-;
int n,m,w[N],v[N],fa[N],p[N],id[N],size[N],cnt=-,t;
double a[N],f[N][N];
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
id[++cnt]=k;size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]) dfs(edge[i].to),size[k]+=size[edge[i].to];
}
bool check()
{
for (int i=;i<=n+;i++)
for (int j=;j<=m+;j++)
f[i][j]=-;
for (int i=n;i>=;i--)
for (int j=;j<=m+;j++)
f[i][j]=max(f[i+][j-]+a[id[i]],f[i+size[id[i]]][j]);
return f[][m+]>=;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4753.in","r",stdin);
freopen("bzoj4753.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
m=read(),n=read();
double l=,r=,ans=;
for (int i=;i<=n;i++)
{
w[i]=read(),r+=v[i]=read(),fa[i]=read();
addedge(fa[i],i);
}
dfs();
while (l+eps<r)
{
double mid=(l+r)/;
for (int i=;i<=n;i++) a[i]=v[i]-w[i]*mid;
if (check()) ans=mid,l=mid+eps;
else r=mid-eps;
}
printf("%.3f",ans);
return ;
}

BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)的更多相关文章

  1. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  2. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

  3. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  4. Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)

    题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...

  5. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  6. BZOJ 4753 [Jsoi2016]最佳团体 ——01分数规划 树形DP

    要求比值最大,当然用分数规划. 二分答案,转化为选取一个最大的联通块使得它们的和大于0 然后我们直接DP. 复杂度$O(n^2\log {n})$ #include <map> #incl ...

  7. P1642 规划 01分数规划+树形DP

    $ \color{#0066ff}{ 题目描述 }$ 某地方有N个工厂,有N-1条路连接它们,且它们两两都可达.每个工厂都有一个产量值和一个污染值.现在工厂要进行规划,拆除其中的M个工厂,使得剩下的工 ...

  8. bzoj4753[JSOI2016]最佳团体

    题意:01分数规划,但可选的数字之间存在森林形的依赖关系(可以认为0号点是个虚根,因为并不能选). 虽然有森林形的依赖关系,但还是可以套分数规划的思路,二分答案k,判断是否存在一个比值大于k的方案 即 ...

  9. 洛谷$P4322\ [JSOI2016]$最佳团体 二分+$dp$

    正解:二分+$dp$ 解题报告: 传送门$QwQ$ 这题长得好套路嗷,,,就一看就看出来是个$01$分数规划+树形$dp$嘛$QwQ$. 考虑现在二分的值为$mid$,若$mid\leq as$,则有 ...

随机推荐

  1. rhel7-Samba服务搭建

    服务检查: [root@localhost ~]# systemctl status smb.service● smb.service - Samba SMB Daemon   Loaded: loa ...

  2. zookeeper环境搭建(Linux)

    安装zookeeper 安装jdk(此处省略) 解压tar包并配置变量环境 配置文件修改 将/usr/local/src/zookeeper-3.4.5/conf这个路径下的zoo_sample.cf ...

  3. python 排列组合

    笛卡尔积(product): 假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2) ...

  4. scrapy框架爬取笔趣阁完整版

    继续上一篇,这一次的爬取了小说内容 pipelines.py import csv class ScrapytestPipeline(object): # 爬虫文件中提取数据的方法每yield一次it ...

  5. 完全数--Python

    如果一个数恰好等于它的因子之和,则称该数为“完全数” [1]  .各个小于它的约数(真约数,列出某数的约数,去掉该数本身,剩下的就是它的真约数)的和等于它本身的自然数叫做完全数(Perfect num ...

  6. go学习笔记-语言基础

    语言基础 结构 基础组成: 包声明 引入包 函数 变量 语句 & 表达式 注释 程序 在开始编写应用之前,我们先从最基本的程序开始,在学习大部分语言之前,都会编写一个可以输出hello wor ...

  7. P1331 海战

    P1331 海战 题目描述 在峰会期间,武装部队得处于高度戒备.警察将监视每一条大街,军队将保卫建筑物,领空将布满了F-2003飞机.此外,巡洋船只和舰队将被派去保护海岸线.不幸的是因为种种原因,国防 ...

  8. java容器操作一

    List l = new ArrayList(); l.add(1); l.add("ne"); // 获取 System.out.println(l.get(0)); // 判断 ...

  9. python os模块atime ,ctime,mtime意义

    ython的os.stat中主要的时间信息有三个:st_mtime,st_atime,st_ctime.   1.st_mtime:time of last modification      最后一 ...

  10. 如何搭建SBT编译Scala开发的Android工程

    作者:戚明峰 最近接触了shadowsocks的Android客户端项目源码(https://github.com/shadowsocks/shadowsocks-android),刚好这个项目是使用 ...