题目大意:有两个操作,1:在第x次操作后的版本上修改一个值,2:查询在第x次操作后的版本上的一个节点的值

即:

你需要维护这样的一个长度为N的数组,支持如下几种操作

  1.在某个历史版本上修改某一个位置上的值

  2.访问某个历史版本上的某一位置的值

此外,每进行一次操作(对于操作2,即为生成一个完全一样的版本,不作任何改动),就会生成一个新的版本。版本编号即为当前操作的编号(从1开始编号,版本0表示初始状态数组)

题解:主席树,即针对每个询问建一棵线段树,但这样会MLE,不过我们可以发现由于相邻线段树的公共部分很多,可以充分利用,达到优化目的,同时每棵线段树还是保留所有的叶节点只是较之前共用了很多共用节点。每次修改最多增加O(log n)的空间,所以总的空间复杂度是O(n log n)

C++ Code:

#include<cstdio>
using namespace std;
const int maxn=20000100;
int root[1001000],lc[maxn],rc[maxn],val[maxn],cnt;
int n,m;
void build(int &rt,int l,int r){
rt=++cnt;
if (l==r){
scanf("%d",&val[rt]);
return;
}
int mid=l+r>>1;
build(lc[rt],l,mid);
build(rc[rt],mid+1,r);
}
void add(int &rt,int ver,int l,int r,int x,int y){
rt=++cnt;
lc[cnt]=lc[ver];rc[cnt]=rc[ver];
if (l==r){
val[rt]=y;
return;
}
int mid=l+r>>1;
if (x<=mid)add(lc[rt],lc[ver],l,mid,x,y);
else add(rc[rt],rc[ver],mid+1,r,x,y);
}
void ask(int rt,int l,int r,int x){
if (l==r){
printf("%d\n",val[rt]);
return;
}
int mid=l+r>>1;
if (x<=mid)ask(lc[rt],l,mid,x);
else ask(rc[rt],mid+1,r,x);
}
int main(){
scanf("%d%d",&n,&m);
build(root[0],1,n);
for (int i=1;i<=m;i++){
int num,ope,x,y;
scanf("%d%d",&num,&ope);
if (ope==1){
scanf("%d%d",&x,&y);
add(root[i],root[num],1,n,x,y);
}else{
scanf("%d",&x);
ask(root[num],1,n,x);
root[i]=root[num];
}
}
return 0;
}

[洛谷P3919]【模板】可持久化数组的更多相关文章

  1. 【洛谷P3919】可持久化数组

    题目大意:需要维护一个长度为 N 的数组,支持在历史版本上单点修改和单点查询. 题解:显然,如果直接暴力维护的话会 MLE.因此,采用线段树进行维护,使得空间复杂度由 \(O(mn)\) 降至 \(O ...

  2. luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)

    luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include< ...

  3. 洛谷P3834 [模板]可持久化线段树1(主席树) [主席树]

    题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定 ...

  4. 洛谷.3374.[模板]树状数组1(CDQ分治)

    题目链接 简易CDQ分治教程 //每个操作分解为一个有序数对(t,p),即(时间,操作位置),时间默认有序,用CDQ分治处理第二维 //对于位置相同的操作 修改优先于查询 //时间是默认有序的 所以可 ...

  5. 洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)

    题目链接 //离散化后范围1~cnt不要错 #include<cstdio> #include<cctype> #include<algorithm> //#def ...

  6. 洛谷.3835.[模板]可持久化平衡树(fhq treap)

    题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...

  7. P3919 (模板)可持久化数组 (主席树)

    题目链接 Solution 主席树水题,连差分的部分都不需要用到. 直接用主席树的结构去存一下就好了. Code #include<bits/stdc++.h> #define mid ( ...

  8. 洛谷 P3919 【模板】可持久化数组(可持久化线段树/平衡树)-可持久化线段树(单点更新,单点查询)

    P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目背景 UPDATE : 最后一个点时间空间已经放大 标题即题意 有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集 ...

  9. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  10. 洛谷——P3919 【模板】可持久化数组(可持久化线段树/平衡树)

    P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目背景 UPDATE : 最后一个点时间空间已经放大 标题即题意 有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集 ...

随机推荐

  1. PHP计算翻页

    function fanye() { if ($total <= $num) { $list['curTotal'] = $total; } else { $offsetA = $start; ...

  2. Spark-源码-Spark-StartAll Master Worler启动流程

    Spark start-all>> """Master启动流程""" Master类 class Master( host: S ...

  3. Hadoop(24)-Hadoop优化

    1. MapReduce 跑得慢的原因 优化方法 MapReduce优化方法主要从六个方面考虑:数据输入.Map阶段.Reduce阶段.IO传输.数据倾斜问题和常用的调优参数. 数据输入 Map阶段 ...

  4. 基于GTID的MySQL主从复制#从原理到配置

    GTID是一个基于原始mysql服务器生成的一个已经被成功执行的全局事务ID,它由服务器ID以及事务ID组合而成.这个全局事务ID不仅仅在原始服务器器上唯一,在所有存在主从关系 的mysql服务器上也 ...

  5. Typora -- 书写即美学

    #Typora -- 书写即美学 ##基本快捷键--需要在所见即所想界面进行输入 加粗 Ctrl + B 加粗 斜体 Ctrl + I 斜体 下划线 Ctrl + U 下划线 删除线 Ctrl + S ...

  6. idea启动spring boot无法加载或找不到主类

    问题产生原因:moudle名称修改,导致项目启动不了 在Terminal界面中执行以下三个命令,我在执行第一个命令的时候报了一个找不到dependency的错误,把那个报错的dependency删了就 ...

  7. Redis 在springBoot中的一个使用示例

    在现系统中使用了一个字典表,更新或插入字典表需要做Redis缓存 @Override @Cache(name = Constants.REDIS_PREFIX_DIC, desc = "变更 ...

  8. centos下搭建svn服务器端/客户端

    1.安装 yum install subversion httpd mod_dav_svn 2.创建仓库存储代码 mkdir /var/repos svnadmin create /var/repos ...

  9. java堆内存模型

     广泛地说,JVM堆内存被分为两部分——年轻代(Young Generation)和老年代(Old Generation). 年轻代 年轻代是所有新对象产生的地方.当年轻代内存空间被用完时,就会触发垃 ...

  10. 3招搞定APP注册作弊

    在说如何应对之前,易盾先给各位盾友梳理移动端APP可能遇到哪些作弊风险.1. 渠道商刷量,伪造大量的下载量和装机量,但没有新用户注册:2. 对于电商.P2P.外卖等平台,会面临散户或者团队刷子的注册- ...