我是先知道的这题是FFT然后再做的,知道是FFT其实就是个套路题啦。首先,我们容易发现

      \(P = \frac{a}{b}\) 其中a表示合法的方案数,而b表示全部的方案数。

  b的值即为\(C\left ( n,3 \right )\)。如何求出合法的方案数呢?先考虑一下:如果我们锁定最大的边,那么合法的方案数就是所有两根木棍长度之和大于这根木棍的方案数。可是这个不好求啊。因为如果要统计方案数,那就一要保证这根木棍不出现在统计的方案中,而要保证方案中出现的两根木棍长度均<=这根木棍的长度,但这是不好做到的(等于是每一根木棍条件不同,复杂度根本无法保证)。

  我们换一个角度:正难则反。不合法的方案数即为两根木棍之和<=这根木棍长度的方案数。这个是好求的,因为<=时,一定满足这根木棍是最长木棍&这根木棍与其他木棍组成的方案不会出现在其中。我们就可以用FFT快速求出卷积,算出两根木棍之和为x的方案数啦。

  可是这题我找了很多程序对拍没有问题,但bzoj上过不去……呜呜呜……所以就不放代码惹。

  ……还是放一下吧,如果有哪位小可爱知道我的程序出了什么问题万分感谢呀……(;д;)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 502000
#define int long long
#define db long double
const db Pi = acos(-1.0);
int T, n, L, S, LAST, len, ans, c[maxn];
int Rec[maxn], R[maxn], C[maxn];
int maxx; int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} struct complex
{
db x, y;
complex (db xx = , db yy = ) { x = xx, y = yy; }
}g[maxn]; complex operator + (complex a, complex b) { return complex(a.x + b.x, a.y + b.y); }
complex operator - (complex a, complex b) { return complex(a.x - b.x, a.y - b.y); }
complex operator * (complex a, complex b) { return complex(a.x * b.x - a.y * b.y, (a.x * b.y + a.y * b.x)); } void FFT(complex *A, int opt)
{
for(int i = ; i < S; i ++)
if(i < R[i]) swap(A[i], A[R[i]]);
for(int mid = ; mid < S; mid <<= )
{
complex W(cos(Pi / mid), opt * sin(Pi / mid));
for(int r = mid << , j = ; j < S; j += r)
{
complex w(, );
for(int k = ; k < mid; k ++, w = w * W)
{
complex x = A[j + k], y = w * A[j + k + mid];
A[j + k] = x + y;
A[j + k + mid] = x - y;
}
}
}
} void init()
{
for(int i = ; i <= S; i ++)
g[i].x = g[i].y = ;
memset(Rec, , sizeof(Rec));
S = , maxx = , len = ans = ;
} void pre()
{
C[] = ;
for(int i = ; i < ; i ++)
C[i] = C[i - ] * i / (i - );
} signed main()
{
T = read();
pre();
while(T --)
{
init();
n = read();
for(int i = ; i <= n; i ++)
{
int x = read();
g[x].x += , Rec[x] += ;
maxx = max(x, maxx);
}
maxx *= ;
while(S <= maxx) S <<= , len ++;
for(int i = LAST; i < S; i ++)
R[i] = ((R[i >> ] >> ) | ((i & ) << (len - )));
LAST = max(LAST, S - );
FFT(g, );
for(int i = ; i < S; i ++) g[i] = g[i] * g[i];
FFT(g, -);
for(int i = ; i <= maxx; i ++) g[i].x /= S;
for(int i = ; i <= maxx; i ++)
{
int x = (int) (g[i].x + 0.5);
if(!(i % )) x -= Rec[i / ];
x /= ; g[i].x = x;
if(i != ) g[i].x += g[i - ].x;
}
for(int i = ; i <= maxx / ; i ++)
ans += ((int) g[i].x) * Rec[i];
printf("%.7Lf\n", (db) (C[n] - ans) / (db) C[n]);
}
return ;
}

【题解】MUTC2013idiots的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. angularjs1+requirejs+ bootstrap+ jQuery低版本配合兼容ie8+浏览器

    angularjs兼容低版本IE浏览器(IE8)angularjs在1.3之后的版本都是选择放弃对IE8及更低IE版本的支持,但是就目前的开发形式来看,IE8的使用客户还是蛮多的,最近有个项目要求尽量 ...

  2. iframe中的页面在IE全屏模式下没有滚动条,正常模式有滚动条

    这个问题在其他浏览器都不会出现,唯独IE不行,搜遍了百度以及各大论坛网站,都找不到这个问题的解决方案,只好自己整了. 造成这个问题的原因很简单,就是刚开始的滚动条我用的是iframe的滚动条,ifra ...

  3. loushang框架的开发中关于BSP的使用,将写好的功能模块部署到主页界面结构上

    前言: 当我们已经开发好相应的模块或者功能的时候,需要将这个功能部署在index主页上作为可点击直接使用的模块,而不是每次需要去浏览对应的url地址. 这时候就需要运用到L5的BSP. 作为刚刚入门l ...

  4. 【c学习-9】

    /*内存练习*/ #include #include//引入内存分配库文件 int main(){ double* x; //定义整型指针和double指针 int* y; x=(double*)ma ...

  5. 学习photoshop心得

    简要的学习了ps的三大功能p图,抠图,作图, p图主要是学了换脸这一效果,用到套索工具,把范冰冰的脸接到郭德纲身上, 首先使用套索工具把脸圈起来 然后移动到 另一个人脸上 再然后混合图层,自动混合 差 ...

  6. Go web表单

    package main import ( "fmt" "html/template" "log" "net/http" ...

  7. Spark是什么

    官方直达电梯 Spark一种基于内存的通用的实时大数据计算框架(作为MapReduce的另一个更优秀的可选的方案) 通用:Spark Core 用于离线计算,Spark SQL 用于交互式查询,Spa ...

  8. shell eval命令使用

    eval命令将会首先扫描命令行进行所有的置换,然后再执行该命令. 该命令适用于那些一次扫描无法实现其功能的变量.该命令对变量进行两次扫描. 这些需要进行两次扫描的变量有时被称为复杂变量.不过这些变量本 ...

  9. goroutine 并发之搜索文件内容

    golang并发编程 - 例子解析 February 26, 2013 最近在看<Programming in Go>, 其中关于并发编程写得很不错, 受益非浅, 其中有一些例子是需要多思 ...

  10. 如何从“点子”落地到“执行”?—完整解析1个手游传播类mini项目的进化

    本文来自网易云社区 作者:林玮园 从点子到落地,是不确定到确定的过程,是从模糊概念到具体现实的实现过程.无论什么点子,在落地变现的过程中都会有很多疑问产生. 首先,不确定点子本身是否成立.点子的背后是 ...