的确,如果不知道这个编码的话的确是一脸懵逼。在这里放一篇认为讲的很详细的 BLOG,有关于编码的方式 & 扩展在里面都有所提及。

  欢迎点此进入 --> 大佬的博客

  在这里主要想推导一下最后面的扩展公式是怎么来的。问题:给定一棵树 & 树上各个节点的度数,求有多少棵满足要求的生成树?

  在了解了Prüfer编码之后,我们已经知道编码与生成树是一一对应的关系了,且一个数在Prüfer编号上面出现的次数即为它的度数 - 1;问题转化成为:一个长度为 \(n - 2\) 的序列中均为范围在 \(1\) ~ \(n\)的数字,规定了每个数字出现的次数,问有多少个合法的序列?首先不考虑是否合法,规定排列当中的数字各不相同,这样的排列有 \(\left ( n - 2 \right )!\) 种。但这样明显统计多了,因为当有相同的数字出现时,交换它们之间的相对位置并不会改变排列的实质。于是我们要在此基础之上除以每一种相同数字的排列数 : \(\prod \left ( d[i] - 1 \right )!\)。

  所以最后的式子是: \(\frac{\left ( n - 2 \right )!}{\prod \left ( d[i] - 1  \right )! }\)

  HNOI2004树的计数就是一道和和上面这个问题一模一样的题,实际上HNOI2008明明的烦恼也是同一道题(实在是不忍吐槽)。不过后者要写高精,我懒……

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000
#define int long long
int n, d[maxn], cal[maxn];
int sum, ans = , a[maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} signed main()
{
n = read(); cal[] = ;
for(int i = ; i <= n; i ++) cal[i] = cal[i - ] * i;
for(int i = ; i <= n; i ++)
{
d[i] = read(); if(d[i])
sum += d[i] - ;
if(d[i] == && n != ) { printf("0\n"); return ; }
a[i] = cal[d[i] - ];
}
if(sum != n - ) { printf("0\n"); return ; }
sort(a + , a + + n);
int j = ;
while(a[j] == && j < n) j ++;
for(int i = ; i <= n - ; i ++)
{
ans *= i;
while(j <= n && !(ans % a[j])) ans /= a[j], j ++;
}
printf("%lld\n", ans);
return ;
}

【算法】Prüfer编码 —— HNOI2004树的计数的更多相关文章

  1. bzoj1211: [HNOI2004]树的计数 prufer编码

    题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...

  2. P2290 [HNOI2004]树的计数(bzoj1211)

    洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...

  3. BZOJ1211: [HNOI2004]树的计数

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1245  Solved: 383[Submit][Statu ...

  4. BZOJ 1211: [HNOI2004]树的计数( 组合数学 )

    知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...

  5. 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2468  Solved: 868 Description 一 ...

  6. bzoj 1211: [HNOI2004]树的计数 -- purfer序列

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, ...

  7. prufer BZOJ1211: [HNOI2004]树的计数

    以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...

  8. Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数

    最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...

  9. bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)

    1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...

随机推荐

  1. hash和history的区别

    vue-router 中hash模式和history模式. 在vue的路由配置中有mode选项,最直观的区别就是在url中hash 带了一个很丑的 # ,而history是没有#的.vue默认使用ha ...

  2. php柱状图多系列动态实现

    <?php require_once 'data.php'; require_once 'jpgraph/src/jpgraph.php'; require_once"jpgraph/ ...

  3. JZOJ 5943. 树

    Description

  4. laravel -- 路由

    基本路由 Route::get('/get',function (){ return "this is get"; }); Route::post('/post',function ...

  5. JavaSE 第二次学习随笔(四)

    ---------------------------------------------------------------------------------------------------- ...

  6. MongoDB在单机上搭建分片副本集群(windows)

    ------------------------------1.安装MongoDB...... ------------------------------2.准备好文件夹 --config:配置文件 ...

  7. Leecode刷题之旅-C语言/python-35.搜索插入位置

    /* * @lc app=leetcode.cn id=35 lang=c * * [35] 搜索插入位置 * * https://leetcode-cn.com/problems/search-in ...

  8. 关于==和equals()方法&Java中string与char如何转换&String,StringBuffer

    1.对于基本数据类型,可以直接使用==和!=进行内容比较 如:int x=30;        int y=30;         x==y;  //true 基本数据类型 简单类型(基本类型) bo ...

  9. Mysql数据库的压力

    rationalError: (2006, 'MySQL server has gone away') 2017年10月10日 20:04:43 阅读数:377 问题描述 使用django+celer ...

  10. Java - 问题集 - 导出csv文件中文乱码

    微软的excel文件需要通过文件头的bom来识别编码,所以写文件时,需要先写入bom头. FileOutputStream fos = new FileOutputStream(new File(&q ...