【算法】Prüfer编码 —— HNOI2004树的计数
的确,如果不知道这个编码的话的确是一脸懵逼。在这里放一篇认为讲的很详细的 BLOG,有关于编码的方式 & 扩展在里面都有所提及。
欢迎点此进入 --> 大佬的博客
在这里主要想推导一下最后面的扩展公式是怎么来的。问题:给定一棵树 & 树上各个节点的度数,求有多少棵满足要求的生成树?
在了解了Prüfer编码之后,我们已经知道编码与生成树是一一对应的关系了,且一个数在Prüfer编号上面出现的次数即为它的度数 - 1;问题转化成为:一个长度为 \(n - 2\) 的序列中均为范围在 \(1\) ~ \(n\)的数字,规定了每个数字出现的次数,问有多少个合法的序列?首先不考虑是否合法,规定排列当中的数字各不相同,这样的排列有 \(\left ( n - 2 \right )!\) 种。但这样明显统计多了,因为当有相同的数字出现时,交换它们之间的相对位置并不会改变排列的实质。于是我们要在此基础之上除以每一种相同数字的排列数 : \(\prod \left ( d[i] - 1 \right )!\)。
所以最后的式子是: \(\frac{\left ( n - 2 \right )!}{\prod \left ( d[i] - 1 \right )! }\)
HNOI2004树的计数就是一道和和上面这个问题一模一样的题,实际上HNOI2008明明的烦恼也是同一道题(实在是不忍吐槽)。不过后者要写高精,我懒……
#include <bits/stdc++.h>
using namespace std;
#define maxn 1000
#define int long long
int n, d[maxn], cal[maxn];
int sum, ans = , a[maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} signed main()
{
n = read(); cal[] = ;
for(int i = ; i <= n; i ++) cal[i] = cal[i - ] * i;
for(int i = ; i <= n; i ++)
{
d[i] = read(); if(d[i])
sum += d[i] - ;
if(d[i] == && n != ) { printf("0\n"); return ; }
a[i] = cal[d[i] - ];
}
if(sum != n - ) { printf("0\n"); return ; }
sort(a + , a + + n);
int j = ;
while(a[j] == && j < n) j ++;
for(int i = ; i <= n - ; i ++)
{
ans *= i;
while(j <= n && !(ans % a[j])) ans /= a[j], j ++;
}
printf("%lld\n", ans);
return ;
}
【算法】Prüfer编码 —— HNOI2004树的计数的更多相关文章
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- P2290 [HNOI2004]树的计数(bzoj1211)
洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...
- BZOJ1211: [HNOI2004]树的计数
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1245 Solved: 383[Submit][Statu ...
- BZOJ 1211: [HNOI2004]树的计数( 组合数学 )
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
- bzoj 1211: [HNOI2004]树的计数 -- purfer序列
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, ...
- prufer BZOJ1211: [HNOI2004]树的计数
以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
- bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...
随机推荐
- Python起源与发展
Python的创始人为吉多*范罗苏姆(Gudio van Rossum) 1.1989年的圣诞节期间,吉多*范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的解释程序,作为ABC语言的一种继承. 2. ...
- AB PLC 编程之状态机
AB的程序设计和西门子有点PLC不大一样,在AB中没有RS指令,所以主要用move指令来作步进.今天我们就用Move指令写个AB的程序,和西门子比,有哪些不同. 控制任务 很简单的一个状态机.初始步为 ...
- python中如何统计一个类的实例化对象
类中的静态变量 需要通过类名.静态变量名 来修改 :通过对象不能修改 python中如何统计一个类的实例化对象?? class Person: #静态变量count,用于记录类被实例化的次数 coun ...
- RubyMine常用快捷键
一级必会 Shift+F10:运行running Ctrl+Alt+R:弹出RakeCtrl+Alt+G:弹出GenerateCtrl+Alt+L:格式化代码Alt+F1:切换视图(Project, ...
- POJ3687 反向拓扑排序
Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16032 Accepted: 4713 D ...
- AVL重平衡细节——插入
话说这个系列鸽了好久,之前在准备语言考试,就没管博客了,现在暑假咱们继续上路! 每当我们进行一次插入之后,整棵AVL树的平衡性就有可能发生改变,为了控制整棵树的高度,我们需要通过一系列变换(重平衡)来 ...
- [答网友问]让GridLength支持动画
原文:[答网友问]让GridLength支持动画 [答网友问]WPF中让GridLength类型支持动画 ...
- LARK BOARD开发板试用第一篇-上电测试学习
1. 先看下板子外观,做工很不错 2. 主芯片的型号是,SoC 为 Cyclone V SX 系列的 5CSXFC6D6F31,不仅在芯片中包含传统的 FPGA 架构,还集成了基于 ARM Corte ...
- GreenMail邮件测试服务器
GreenMail邮件测试服务器 http://blog.csdn.net/jackiehff/article/details/8741988 这个目前没有需求,所以暂不研究
- Ubuntu 手机 app开发学习0
# 相关网址 http://developer.ubuntu.com/zh-cn/apps/sdk/ 0. 环境搭建 首选需要一个Ubuntu 14.04操作系统.没啥好讲的,直接安装了一个虚拟机. ...