题目描述

YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域。简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形。从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路(简称道路),每条双向道路连接主干道上两个相邻的交叉路口。下图为一张YT市的地图(n = 2),城市被划分为2×2个区域,包括3×3个交叉路口和12条双向道路。
小Z作为该市的市长,他根据统计信息得到了每天上班高峰期间YT市每条道路两个方向的人流量,即在高峰期间沿着该方向通过这条道路的人数。每一个交叉路口都有不同的海拔高度值,YT市市民认为爬坡是一件非常累的事情,每向上爬h的高度,就需要消耗h的体力。如果是下坡的话,则不需要耗费体力。因此如果一段道路的终点海拔减去起点海拔的值为h(注意h可能是负数),那么一个人经过这段路所消耗的体力是max{0, h}(这里max{a, b}表示取a, b两个值中的较大值)。 小Z还测量得到这个城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知。小Z想知道在最理想的情况下(即你可以任意假设其他路口的海拔高度),每天上班高峰期间所有人爬坡所消耗的总体力和的最小值。

输入

第一行包含一个整数n,含义如上文所示。接下来4n(n + 1)行,每行包含一个非负整数分别表示每一条道路每一个方向的人流量信息。输入顺序:n(n + 1)个数表示所有从西到东方向的人流量,然后n(n + 1)个数表示所有从北到南方向的人流量,n(n + 1)个数表示所有从东到西方向的人流量,最后是n(n + 1)个数表示所有从南到北方向的人流量。对于每一个方向,输入顺序按照起点由北向南,若南北方向相同时由西到东的顺序给出(参见样例输入)。

输出

仅包含一个数,表示在最理想情况下每天上班高峰期间所有人爬坡所消耗的总体力和(即总体力和的最小值),结果四舍五入到整数。

样例输入

1
1
2
3
4
5
6
7
8

样例输出

3


题解

最小割转对偶图最短路

首先肯定有:1个点的高度只可能是0或1,且所有“0”、所有“1”都是相连的。即只有两片区域,左上为“0”区域,右下为“1”区域。

那么题目就转化为一个最小割模型。

但是点数太多,直接求最大流会TLE,于是转化为对偶图求解。

具体同 bzoj1001

然而这题是有向图,需要考虑方向。

考虑到朝右下的边是s->t方向,而朝左上的边是t->s方向。

所以求对偶图的边时,也需要使用相同的方向,即朝右下的边是s'->t'方向,朝左上的边是t'->s'方向,如下图所示。

然后跑堆优化Dijkstra即可。

#include <cstdio>
#include <cstring>
#include <utility>
#include <queue>
using namespace std;
priority_queue<pair<int , int> > q;
int head[250010] , to[1003000] , len[1003000] , next[1003000] , cnt , dis[250010] , vis[250010] , n , num[510][510];
void add(int x , int y , int z)
{
to[++cnt] = y;
len[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
int main()
{
int i , j , x , s , t;
scanf("%d" , &n);
s = 0 , t = n * n + 1;
for(i = 1 ; i <= n ; i ++ )
num[0][i] = num[i][n + 1] = s , num[i][0] = num[n + 1][i] = t;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
num[i][j] = n * (i - 1) + j;
for(i = 0 ; i <= n ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i][j] , num[i + 1][j] , x);
for(i = 1 ; i <= n ; i ++ ) for(j = 0 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i][j + 1] , num[i][j] , x);
for(i = 0 ; i <= n ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i + 1][j] , num[i][j] , x);
for(i = 1 ; i <= n ; i ++ ) for(j = 0 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i][j] , num[i][j + 1] , x);
memset(dis , 0x3f , sizeof(dis));
dis[s] = 0;
q.push(make_pair(0 , s));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(dis[to[i]] > dis[x] + len[i])
dis[to[i]] = dis[x] + len[i] , q.push(make_pair(-dis[to[i]] , to[i]));
}
printf("%d\n" , dis[t]);
return 0;
}

【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路的更多相关文章

  1. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  2. [NOI2010]海拔——最小割+对偶图

    题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. ...

  3. bzoj 2007 [Noi2010]海拔——最小割转最短路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...

  4. 【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2095  Solved: 1002[Submit][Status] ...

  5. BZOJ2007 NOI2010 海拔 平面图转对偶图 最小割

    题面太长啦,请诸位自行品尝—>海拔 分析: 这是我见过算法比较明显的最小割题目了,很明显对于某一条简单路径,海拔只会有一次变换. 而且我们要最终使变换海拔的边权值和最小. 我们发现变换海拔相当于 ...

  6. [bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  7. [NOI2010]海拔(最小割)

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个 ...

  8. BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路

    原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...

  9. 【bzoj1001】[BeiJing2006]狼抓兔子 最小割+对偶图+最短路

    题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

随机推荐

  1. motto - MySQL - 常用命令

    本文搜索关键字:motto mysql 登录数据库 mysql -uroot -proot -P3306 -h127.0.0.1 --prompt "\u@\h \d>" - ...

  2. 使用Python对Csv文件操作

    csv是Comma-Separated Values的缩写,是用文本文件形式储存的表格数据,比如如下的表格: 就可以存储为csv文件,文件内容是: No.,Name,Age,Score 1,mayi, ...

  3. vue.js 组件-全局组件和局部组件

    这两天学习了Vue.js 感觉组件这个地方知识点挺多的,而且很重要,所以,今天添加一点小笔记. 首先Vue组件的使用有3个步骤,创建组件构造器,注册组件,使用组件3个方面. 代码演示如下: <! ...

  4. thinkphp5一些文件夹用法

    一.vendor通常放一些第三方的文件,如短信.支付宝等.用法: 1.在vendor中建一个文件夹: 2.在文件夹中新建一个类:主要命名空间(没有vendor ):如下面: 3.在控制器中调用,除了通 ...

  5. Mongoose模式的扩展

    模式的扩展 默认值 默认值的类型: 固定值.即使生成 代码展示: var mongoose = require('mongoose');mongoose.connect('mongodb://loca ...

  6. mysql_connect(): [2002] No such file or directory

    在mac中搭建php的开发环境 1. apach ---- 推荐用MAMP.你只要把你的php文件/项目放入到htdocs(/Applications/MAMP/htdocs)目录下,启动mamp,输 ...

  7. Scala学习笔记(二):运行脚本文件

    在某个目录(如:F:\)下新建一个文本文件,命名为:hello.scala 其内容为: println("Hello World!") 那么这个时候该怎么运行这个脚本文件呢? 通过 ...

  8. 最后一片蓝海的终极狂欢-写在Win10发布前夕

    作为一名Windows8.x+系统平台从业者,从工作伊始,耳边不断充斥着Windows将走向没落的言论,Win10今日晚些时候即将发布,笔者借此机会,说说自己的看法. 早在2012年的时候,IDC曾预 ...

  9. html5判断设备的动作

    相应的事件 deviceorientation事件提供设备的物理方向信息,表示为一系列本地坐标系的旋角. devicemotion事件提供设备的加速信息,表示为定义在设备上的坐标系中的卡尔迪坐标.其还 ...

  10. 分分钟搞定redis

    随着科技不断的发展,使用到的技术也是更新换代,大家都知道当一个程序用户量上来之后,必然是要做数据缓存的,那么如何去实现的呢,在之前我们一直使用memcache去做数据缓存,现在众所周知主流的缓存技术已 ...