【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路
题目描述
.bmp)
输入
输出
样例输入
1
1
2
3
4
5
6
7
8
样例输出
3
题解
最小割转对偶图最短路
首先肯定有:1个点的高度只可能是0或1,且所有“0”、所有“1”都是相连的。即只有两片区域,左上为“0”区域,右下为“1”区域。
那么题目就转化为一个最小割模型。
但是点数太多,直接求最大流会TLE,于是转化为对偶图求解。
具体同 bzoj1001 。
然而这题是有向图,需要考虑方向。
考虑到朝右下的边是s->t方向,而朝左上的边是t->s方向。
所以求对偶图的边时,也需要使用相同的方向,即朝右下的边是s'->t'方向,朝左上的边是t'->s'方向,如下图所示。
然后跑堆优化Dijkstra即可。
#include <cstdio>
#include <cstring>
#include <utility>
#include <queue>
using namespace std;
priority_queue<pair<int , int> > q;
int head[250010] , to[1003000] , len[1003000] , next[1003000] , cnt , dis[250010] , vis[250010] , n , num[510][510];
void add(int x , int y , int z)
{
to[++cnt] = y;
len[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
int main()
{
int i , j , x , s , t;
scanf("%d" , &n);
s = 0 , t = n * n + 1;
for(i = 1 ; i <= n ; i ++ )
num[0][i] = num[i][n + 1] = s , num[i][0] = num[n + 1][i] = t;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
num[i][j] = n * (i - 1) + j;
for(i = 0 ; i <= n ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i][j] , num[i + 1][j] , x);
for(i = 1 ; i <= n ; i ++ ) for(j = 0 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i][j + 1] , num[i][j] , x);
for(i = 0 ; i <= n ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i + 1][j] , num[i][j] , x);
for(i = 1 ; i <= n ; i ++ ) for(j = 0 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i][j] , num[i][j + 1] , x);
memset(dis , 0x3f , sizeof(dis));
dis[s] = 0;
q.push(make_pair(0 , s));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(dis[to[i]] > dis[x] + len[i])
dis[to[i]] = dis[x] + len[i] , q.push(make_pair(-dis[to[i]] , to[i]));
}
printf("%d\n" , dis[t]);
return 0;
}
【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路的更多相关文章
- BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)
题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...
- [NOI2010]海拔——最小割+对偶图
题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. ...
- bzoj 2007 [Noi2010]海拔——最小割转最短路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...
- 【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)
2007: [Noi2010]海拔 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2095 Solved: 1002[Submit][Status] ...
- BZOJ2007 NOI2010 海拔 平面图转对偶图 最小割
题面太长啦,请诸位自行品尝—>海拔 分析: 这是我见过算法比较明显的最小割题目了,很明显对于某一条简单路径,海拔只会有一次变换. 而且我们要最终使变换海拔的边权值和最小. 我们发现变换海拔相当于 ...
- [bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...
- [NOI2010]海拔(最小割)
题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个 ...
- BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路
原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...
- 【bzoj1001】[BeiJing2006]狼抓兔子 最小割+对偶图+最短路
题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
随机推荐
- Asp.NET Core 在IIS部署 An assembly specified in the application dependencies manifest was not found
今天在发布应用的时候,出来了一个报错:An assembly specified in the application dependencies manifest was not found 情况如下 ...
- 码云配置webhooks自动触发拉取代码
webhooks的使用 码云和github的钩子叫webhooks 每次您 push 代码后,都会给远程 HTTP URL 发送一个 POST 请求 码云项目管理页面的webhooks设置: http ...
- Python学习之模块基础
模块就是程序 编写以下简单代码 print('hello python') 并将py文件保存在c盘的python(假设新建)文件下,通过pycharm的Terminal 或者windom命令窗口调出p ...
- Horner规则求多项式
/* Horner */ /*多项式:A(x)=a[n]X^n+a[n-1]x^n-1+...+a[1]X^1+a[0]X^0*/ #include <stdio.h> long int ...
- 关于VSCode如何缩进两个空格
使用VSCode编写vue的时候,由于缩进问题经常报错.(默认缩进4个空格,实际规范上是两个空格) 更改VSCode的缩进格式. 但是此时你在编写代码的时候却发现任然缩进4格,此时因为vscode默认 ...
- unity3d easytouch计算摇杆旋转角度以及摇杆八方向控制角色
在写第三人称控制的时候,一开始在电脑测试是用WASD控制角色 后来需要发布到手机上,于是就加了一个摇杆 键盘控制角色的代码已经写好了,角色八方向移动 如果按照传统的大众思路来控制的话,是达不到我想要的 ...
- Linux-Shell脚本编程-学习-3-Shell编程-shell脚本基本格式
前面两篇文章基本介绍了一部分linux下的基本命令,后面还需要大家自行了解下linux的文件系统的磁盘管理部分,这里就不在写了. 什么是shell编程,我也解释不来,什么是shell脚本了,我理解就是 ...
- C++学习011-常用内存分配及释放函数
C++用有多种方法来分配及释放内存,下面是一些经常使用的内存分配及释放函数 现在我还是一个技术小白,一般用到也指示 new+delete 和 malloc和free 其他的也是在学习中看到,下面的文字 ...
- JMeter Plugins Manager
JMeter插件管理器官网: https://jmeter-plugins.org/ 把jmeter-plugins-manager-0.16.jar放到C:\JMeter\apache-jmeter ...
- 问题 C: 质因数的个数
1947: 质因数的个数 时间限制: 1 Sec 内存限制: 32 MB提交: 245 解决: 114[提交][状态][讨论版][命题人:外部导入] 题目描述 求正整数N(N>1)的质因数的 ...