关于$f(x)=\int_0^x\left|\sin\frac1t\right|\text dt$求导的问题
首先,我们考虑\(f(x)\)在\(\mathbb R\)上都是定义的。根据定义,显然有\(f(0)=0\);其次,对于\(x\neq0\),不妨先设\(x\gt0\),则有在\(t\rightarrow\frac1t\)的积分变换下为
\]
显然由于积分\(\int_{\frac1x}^{+\infty}\frac{\text dt}{t^2}\)是收敛的,故\(f(x)\)的确是有定义的;\(x<0\)同理,从而\(f(x)\)在\(\mathbb R\)上的确都是有定义的。
现在,我们考虑\(f(x)\)是否连续这个问题,在\(x\neq0\)时,\(f(x)\)显然是连续的。现在我们重点来考察\(x=0\)这点是否连续。依旧利用\((\ref{1})\)式的讨论,则有
\]
故而,\(\begin{align}\lim_{x\rightarrow0^+}f(x)=0\end{align}\);同理,可证\(\begin{align}\lim_{x\rightarrow0^-}f(x)=0\end{align}\)。又\(f(0)=0\),故有\(\begin{align}\lim_{x\rightarrow0}f(x)=f(0)\end{align}\),即\(f(x)\)在\(x=0\)处也连续。即\(f(x)\)在\(\mathbb R\)上连续,现在,我们就可以开始着手讨论\(f(x)\)在\(\mathbb R\)上的求导问题了。
当\(x\neq0\)时,容易证明\(f(x)\)的导数存在,为
\]
但当\(x=0\)时,其导数自然不能粗暴地写为
\]
这是因为\(\begin{align}\lim_{x\rightarrow\pm\infty}\sin x\end{align}\)不存在,故上式是一个没有良好定义的东西。为求出\(x=0\)处的导数,我们应该回到导数的定义,进行详细的讨论。考虑导数的定义,则有
\]
当上述极限存在时,导数即存在。考虑\(x_0=0\)且\(h\gt0\),则有
\]
不妨取\(k\in\mathbb N^+\),使得\(\frac1h\in\left[k\pi,\ (k+1)\pi\right)\),这样子\((\ref{5})\)式中的极限可以化为
\]
设
\]
显然\(f^\prime(0^+)=A_1+A_2\)。首先考虑\(A_1\),自然有
\]
接下来考虑\(A_2\),则有
\]
注意到\(\begin{align}\lim_{k\rightarrow+\infty}\sum_{n=k+1}^\infty\frac1{n^2\pi}=0\end{align}\)且\(\begin{align}\lim_{k\rightarrow+\infty}\frac1{2(k+1)}=0\end{align}\),故上式中最后的极限可以利用Stolz定理求得,为
\]
即\(A_2\le\frac2\pi\)。又有
\]
注意到\(\begin{align}\lim_{k\rightarrow+\infty}\sum_{n=k+1}^\infty\frac1{(n+1)^2\pi}=0\end{align}\)且\(\begin{align}\lim_{k\rightarrow+\infty}\frac1{2k}=0\end{align}\),故上式中最后的极限可以利用Stolz定理求得,为
\]
即\(A_2\ge\frac2\pi\),故有
\]
同理,易证\(f^\prime(0^-)=\frac2\pi\),故有
\]
故\(f(x)\)的导数为
\]
注意到\(x=0\)为\(f^\prime(x)\)的振荡间断点,属于第二类间断点,满足导函数对间断点的要求。
后记:这是一个非常有趣的讨论,我原以为由于\(\sin\frac1x\)在\(x=0\)处无定义,从而使得\(x\neq0\)处的导数不存在。但是我却没有注意到这是一个属于第二类间断点的震荡间断点,这并不违背导函数对间断点的要求,在根据定义计算后,我们的确得到了\(x=0\)处的导数,从而得到了\(f(x)\)在\(\mathbb R\)上的导数。最后,我十分感谢超理论坛的insane和地球猫猫教教主的帮助,这两位大佬的思想让我受益匪浅。
另,我要吐槽知网某篇论文,这是由地球猫猫教教主寻找得到的一篇论文,它是发表在《纺织基础科学学报》1993年12月第6卷第4期,眭润生先生的《\(\int_0^x\sin\varphi(x)\text dt\)在\(x=0\)的右导数》一文。此文在例3的讨论中证明了\(f^\prime(0^+)\)不存在,但他的论证有一个很严重的问题,他最后利用放缩的方法,将某个极限夹逼于两个与\(\begin{align}\lim_{x\rightarrow\infty}\sin x\end{align}\)极限有关的极限之中,并且说由于\(\begin{align}\lim_{x\rightarrow\infty}\sin x\end{align}\)极限不存在,故右导数不存在。这个逻辑是很有问题的,因为夹逼定理只能用来证明极限存在,而不能用来证明极限不存在,例如,我总能选择两个发散的序列使得我要讨论的某个已知收敛序列夹在这两个发散序列之间,显然,两个发散的序列并不能给出原序列极限不存在的信息。事实上,他的讨论中,我们可以选定特定的序列\({x_n}\)使得\(\begin{align}\lim_{n\rightarrow\infty}\sin x_n\end{align}\)极限为\([-1,\ 1]\)之中的任意值,而恰好,我们有\(-1\lt\frac2\pi\lt1\)。我不知道他其他细节是否正确,但是至少他对这个问题的证明的很明显的一个逻辑问题处在这里。
关于$f(x)=\int_0^x\left|\sin\frac1t\right|\text dt$求导的问题的更多相关文章
- 计算 $\dps{\int_0^\infty\frac{\sin^2x}{x^2}dx=\frac{\pi}{2}}$
计算 $\dps{\int_0^\infty\frac{\sin^2x}{x^2}dx=\frac{\pi}{2}}$. 由分部积分, $$\bee\label{1}\bea \int_0^\inft ...
- 【例3】设有关系模式R(A, B, C, D, E)与它的函数依赖集F={A→BC, CD→E, B→D, E→A},求R的所有候选键。 解题思路:
通过分析F发现,其所有的属性A.B.C.D.E都是LR类属性,没有L类.R类.N类属性. 因此,先从这些属性中依次取出一个属性,分别求它们的闭包:=ABCDE,=BD,=C,=D, =ABCDE.由于 ...
- [再寄小读者之数学篇](2014-07-27 $H^{-1}$ 中的有界集与弱收敛极限)
设 $H^{-1}$ 是 $H^1_0$ 的对偶空间, 定义域为 $[0,1]$. 试证: (1) $\sed{h\sin (2\pi hx);\ h>0}$ 在 $H^{-1}$ 中有界; ( ...
- OO第一次单元总结
第一次总结性博客 16071070 陈泽寅 2019.3.23 一.第一单元所学总结 首先先来总结一下第一单元我所学到的知识以及所感所悟.第一个单元,是我第一次接触JAVA语言,并且再使用了几次之后, ...
- OO第一单元作业总结之初识面向对象
第一个单元的三次作业均为求导,循序渐进的让我们掌握如何构造类和方法,让整个代码是面向对象的设计而不是面向过程的设计.如果第一次作业和第二次作业你只是简单的对过程着手架构类,到了第三次作业就会变得格外麻 ...
- OO第一单元作业
第一次作业 类图: 复杂度: 圈复杂度的问题一直困扰着这三次作业,主要体现在求导方法中先判断符号导致出现过多判断语句,应该将整理符号放在一个新的类中处理. 第一次作业由于对面向对象的思维有些不理解 ...
- python 解积分方程
引用:https://www.aliyun.com/jiaocheng/527786.html sympy求解极限.积分.微分.二元一次方程:http://www.gzhshoulu.wang/art ...
- Alink漫谈(十一) :线性回归 之 L-BFGS优化
Alink漫谈(十一) :线性回归 之 L-BFGS优化 目录 Alink漫谈(十一) :线性回归 之 L-BFGS优化 0x00 摘要 0x01 回顾 1.1 优化基本思路 1.2 各类优化方法 0 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ
众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...
随机推荐
- ubunto 免输入密码 登录 putty ssh-keygen
交互式密码不安全,现在改用 ssh 证书方式,不用输入密码使用公钥证书登录. 方法1, 此方法,仅试用于,仅使用win putty 来连接方式使用,如果双方都是 linux 如 rsync 同步等时, ...
- 安装部署hyperledger fabric1.0
安装环境 CentOS7 1.安装Docker Docker Hub在国外,安装会较慢,可用国内镜像DaoCloud.可执行以下命令安装Docker. sudo yum install -y yum- ...
- [头脑风暴] 解读Docker Bridge网络模型
背景 这几天在研究Kubernetes, 遇到一个有意思的nodejs镜像:luksa/kubia # 不带端口映射启动容器docker run -it -d luksa/kubia# 连接到默认的B ...
- VScode 格式化代码保存时使用ESlint修复代码
前言 eslint vs code 新买的电脑啊啊西 装VScode 配置格式化代码保存时使用ESlint修复代码头快炸了,不建议初学者用,太费时间了: 终于搞定---再也不要担心缩进,函数(名)和 ...
- 吐血干货,直播首屏耗时400ms以下的优化实践
导读: 直播行业的竞争越来越激烈,进过18年这波洗牌后,已经度过了蛮荒暴力期,剩下的都是在不断追求体验.最近在帮做直播优化首开,通过多种方案并行,把首开降到500ms以下,希望能对大家有借鉴. 背景: ...
- Elasticsearch批量插入时,存在就不插入
当我们使用 Elasticsearch-py 批量插入数据到 ES 的时候,我们常常使用它的 helpers模块里面的bulk函数.其使用方法如下: from elasticsearch import ...
- 手动搭建webpack + vue项目之初体验
在使用vue做开发时,大部分人只会使用官方提供的脚手架搭建项目,脚手架虽然很好用,但想要成为一名优秀的前端开发者,webpack这一道坎是绕不开的,所以我们要学会脱离脚手架,利用webpack手动搭建 ...
- 网页外链用了 target="_blank",结果悲剧了
今天给大家分享一个 Web 知识点.如果你有过一段时间的 Web 开发经验,可能已经知道了.不过对于刚接触的新手来说,还是有必要了解一下的. 我们知道,网页里的a标签默认在当前窗口跳转链接地址,如果需 ...
- 使用docker构建hadoop集群
docker的使用越来越普遍了,大家不知道docker的还需要进一步学习一下.这次咱们使用docker去进行hadoop集群的构建. 使用docker构建的好处真的很多,一台电脑上可以学习安装很多想做 ...
- [Alg] 文本匹配-多模匹配-AC自动机
1. 简介 AC自动机是一种多模匹配的文本匹配算法. 如果采用naive的方法,即依次比较文本串s中是否包含模式串p1, p2,...非常耗时.考虑到这些模式串中可能具有相同子串,可以利用已经比较过的 ...