【Hadoop离线基础总结】oozie调度MapReduce任务
1.准备MR执行的数据
MR的程序可以是自己写的,也可以是hadoop工程自带的。这里选用hadoop工程自带的MR程序来运行wordcount的示例
准备以下数据上传到HDFS的/oozie/input路径下去hdfs dfs -mkdir -p /oozie/input
vim wordcount.txt
hello world hadoop
spark hive hadoop
hdfs dfs -put wordcount.txt /oozie/input将数据上传到hdfs对应目录2.执行官方测试案例
yarn jar /export/servers/hadoop-2.6.0-cdh5.14.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.14.0.jar wordcount /oozie/input/ /oozie/output3.准备我们调度的资源
将需要调度的资源都准备好放到一个文件夹下面去,包括jar包、ob.properties以及workflow.xml
拷贝MR的任务模板cd /export/servers/oozie-4.1.0-cdh5.14.0
cp -ra examples/apps/map-reduce/ oozie_works/
删掉MR任务模板lib目录下自带的jar包
cd /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works/map-reduce/lib
rm -rf oozie-examples-4.1.0-cdh5.14.0.jar
拷贝jar包到对应目录
从上一步的删除当中,可以看到需要调度的jar包存放在了/export/servers/oozie-4.1.0-cdh5.14.0/oozie_works/map-reduce/lib目录下,所以把需要调度的jar包也放到这个路径下即可
cp /export/servers/hadoop-2.6.0-cdh5.14.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.14.0.jar /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works/map-reduce/lib/4.修改配置文件
修改job.properties
cd /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works/map-reduce
vim job.properties
nameNode=hdfs://node01:8020
jobTracker=node01:8032
queueName=default
examplesRoot=oozie_works oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/map-reduce/workflow.xml
outputDir=/oozie/output
inputdir=/oozie/input
修改workflow.xml
cd /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works/map-reduce
vim workflow.xml
<?xml version="1.0" encoding="UTF-8"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<workflow-app xmlns="uri:oozie:workflow:0.5" name="map-reduce-wf">
<start to="mr-node"/>
<action name="mr-node">
<map-reduce>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/${outputDir}"/>
</prepare>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
<!--把这些原有的配置注释掉-->
<!--
<property>
<name>mapred.mapper.class</name>
<value>org.apache.oozie.example.SampleMapper</value>
</property>
<property>
<name>mapred.reducer.class</name>
<value>org.apache.oozie.example.SampleReducer</value>
</property>
<property>
<name>mapred.map.tasks</name>
<value>1</value>
</property>
<property>
<name>mapred.input.dir</name>
<value>/user/${wf:user()}/${examplesRoot}/input-data/text</value>
</property>
<property>
<name>mapred.output.dir</name>
<value>/user/${wf:user()}/${examplesRoot}/output-data/${outputDir}</value>
</property>
--> <!-- 开启使用新的API来进行配置 -->
<property>
<name>mapred.mapper.new-api</name>
<value>true</value>
</property> <property>
<name>mapred.reducer.new-api</name>
<value>true</value>
</property> <!-- 指定MR的输出key的类型 -->
<property>
<name>mapreduce.job.output.key.class</name>
<value>org.apache.hadoop.io.Text</value>
</property> <!-- 指定MR的输出的value的类型-->
<property>
<name>mapreduce.job.output.value.class</name>
<value>org.apache.hadoop.io.IntWritable</value>
</property> <!-- 指定输入路径 -->
<property>
<name>mapred.input.dir</name>
<value>${nameNode}/${inputdir}</value>
</property> <!-- 指定输出路径 -->
<property>
<name>mapred.output.dir</name>
<value>${nameNode}/${outputDir}</value>
</property> <!-- 指定执行的map类 -->
<property>
<name>mapreduce.job.map.class</name>
<value>org.apache.hadoop.examples.WordCount$TokenizerMapper</value>
</property> <!-- 指定执行的reduce类 -->
<property>
<name>mapreduce.job.reduce.class</name>
<value>org.apache.hadoop.examples.WordCount$IntSumReducer</value>
</property>
<!-- 配置map task的个数 -->
<property>
<name>mapred.map.tasks</name>
<value>1</value>
</property> </configuration>
</map-reduce>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>Map/Reduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>
5.上传调度任务到hdfs对应目录
cd /export/servers/oozie-4.1.0-cdh5.14.0/oozie_works
hdfs dfs -put map-reduce/ /user/root/oozie_works/
6.执行调度任务
执行调度任务,然后通过oozie的11000端口进行查看任务结果
cd /export/servers/oozie-4.1.0-cdh5.14.0
bin/oozie job -oozie http://node03:11000/oozie -config oozie_works/map-reduce/job.properties -run
【Hadoop离线基础总结】oozie调度MapReduce任务的更多相关文章
- 【Hadoop离线基础总结】oozie的安装部署与使用
目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...
- 【Hadoop离线基础总结】Hue的简单介绍和安装部署
目录 Hue的简单介绍 概述 核心功能 安装部署 下载Hue的压缩包并上传到linux解压 编译安装启动 启动Hue进程 hue与其他框架的集成 Hue与Hadoop集成 Hue与Hive集成 Hue ...
- 【Hadoop离线基础总结】impala简单介绍及安装部署
目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安 ...
- 【Hadoop离线基础总结】Hive调优手段
Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...
- 【Hadoop离线基础总结】流量日志分析网站整体架构模块开发
目录 数据仓库设计 维度建模概述 维度建模的三种模式 本项目中数据仓库的设计 ETL开发 创建ODS层数据表 导入ODS层数据 生成ODS层明细宽表 统计分析开发 流量分析 受访分析 访客visit分 ...
- 【Hadoop离线基础总结】Sqoop常用命令及参数
目录 常用命令 常用公用参数 公用参数:数据库连接 公用参数:import 公用参数:export 公用参数:hive 常用命令&参数 从关系表导入--import 导出到关系表--expor ...
- 【Hadoop离线基础总结】MapReduce增强(下)
MapReduce增强(下) MapTask运行机制详解以及MapTask的并行度 MapTask运行流程 第一步:读取数据组件InputFormat(默认TextInputFormat)会通过get ...
- 【Hadoop离线基础总结】Hadoop High Availability\Hadoop基础环境增强
目录 简单介绍 Hadoop HA 概述 集群搭建规划 集群搭建 第一步:停止服务 第二步:启动所有节点的ZooKeeper 第三步:更改配置文件 第四步:启动服务 简单介绍 Hadoop HA 概述 ...
- 【Hadoop离线基础总结】Yarn集群的资源调度
Yarn集群的资源调度 介绍 概述 Yarn是 Hadoop 2.x 引入的新的资源管理系统模块,主要用于管理集群当中的资源(主要是服务器的各种硬件资源,比如内存.CPU等),它不光管理硬件资源,还管 ...
- 【Hadoop离线基础总结】完全分布式环境搭建
完全分布式环境搭建 服务规划 适用于工作当中正式环境搭建 安装步骤 第一步:安装包解压 停止之前的Hadoop集群的所有服务,并删除所有机器的Hadoop安装包,然后重新解压Hadoop压缩包 三台机 ...
随机推荐
- Eclipse版本控制
各版本的区别: 1.Eclipse IDE for Java Developers 是Eclipse的platform加上JDT插件,用来java开发的 2.Eclipse IDE for Java ...
- win7下delphi中的help文档问题
一,要安装WinHlp32.exe 文件 二, 三,在安装目录下:
- 💕《给产品经理讲JVM》:垃圾收集器
前言 在上篇中,我们把 JVM 中的垃圾收集算法有了一个大概的了解,又是一个阴雨连绵的周末,宅在家里的我们又开始了新一轮的学习: 产品大大:上周末我们说了垃圾收集算法,下面是不是要讲一下这些算法的应用 ...
- XML-解析失败原因初步分析
更多精彩文章请关注公众号『大海的BLOG』 首先放出有问题的代码 之所以直入主题是因为肝完了事情,急需入睡.hiahia hiboard:updateUrl="https://xxx.com ...
- Mac os Pycharm 中使用Stanza进行实体识别(自然语言处理nlp)
stanza 是斯坦福开源Python版nlp库,对自然语言处理有好大的提升,具体好在哪里,官网里面都有介绍,这里就不翻译了.下面放上对应的官网和仓库地址. stanza 官网地址:点击我进入 sta ...
- vue2.x学习笔记(十八)
接着前面的内容:https://www.cnblogs.com/yanggb/p/12629705.html. 处理边界情况 这里记录的都是和处理边界情况有关的功能,即一些需要对vue的规则做一些小调 ...
- NCTF2018_easy_audit->coding_breaks
easy_audit 题目源码 <?php highlight_file(__FILE__); error_reporting(0); if($_REQUEST){ foreach ($_REQ ...
- 如何用Github钩子做自动部署
最近机缘巧合的购置了域名和服务器,不用实在是浪费,再加上一直没有属于自己的个人网站,所以打算用hexo在服务器上玩一下,这样也就不用再纠结用Github pages还是Gitee pages了.当然, ...
- 【认证与授权】2、基于session的认证方式
这一篇将通过一个简单的web项目实现基于Session的认证授权方式,也是以往传统项目的做法. 先来复习一下流程 用户认证通过以后,在服务端生成用户相关的数据保存在当前会话(Session)中,发给客 ...
- 算法笔记刷题5(PAT A1025)
第一次上手PAT的甲级题目,瑟瑟发抖(英语不好对着题目愣了半天) 这一题的要点是使用sort函数. 使用sort函数必须使用 #include <algorithm> using name ...