MobileNets: Open-Source Models for Efficient On-Device Vision
https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
(Cross-posted on the Google Open Source Blog)
Deep learning has fueled tremendous progress in the field of computer
vision in recent years, with neural networks repeatedly pushing the frontier of visual recognition technology.
While many of those technologies such as object, landmark, logo and
text recognition are provided for internet-connected devices through the
Cloud Vision API, we
believe that the ever-increasing computational power of mobile devices
can enable the delivery of these technologies into the hands of our
users, anytime, anywhere, regardless of internet connection. However,
visual recognition for on device and embedded applications poses many
challenges — models must run quickly with high accuracy in a
resource-constrained environment making use of limited computation,
power and space.
Today we are pleased to announce the release of MobileNets, a family of mobile-first computer vision models for TensorFlow,
designed to effectively maximize accuracy while being mindful of the
restricted resources for an on-device or embedded application.
MobileNets are small, low-latency, low-power models parameterized to
meet the resource constraints of a variety of use cases. They can be
built upon for classification, detection, embeddings and segmentation
similar to how other popular large scale models, such as Inception, are used.
![]() |
Example use cases include detection, fine-grain classification, attributes and geo-localization. |
This release contains the model definition for MobileNets in TensorFlow using TF-Slim, as well as 16 pre-trained ImageNet classification checkpoints for use in mobile projects of all sizes. The models can be run efficiently on mobile devices with TensorFlow Mobile.
Model Checkpoint
|
Million MACs
|
Million Parameters
|
Top-1 Accuracy
|
Top-5 Accuracy
|
569
|
4.24
|
70.7
|
89.5
|
|
418
|
4.24
|
69.3
|
88.9
|
|
291
|
4.24
|
67.2
|
87.5
|
|
186
|
4.24
|
64.1
|
85.3
|
|
317
|
2.59
|
68.4
|
88.2
|
|
233
|
2.59
|
67.4
|
87.3
|
|
162
|
2.59
|
65.2
|
86.1
|
|
104
|
2.59
|
61.8
|
83.6
|
|
150
|
1.34
|
64.0
|
85.4
|
|
110
|
1.34
|
62.1
|
84.0
|
|
77
|
1.34
|
59.9
|
82.5
|
|
49
|
1.34
|
56.2
|
79.6
|
|
41
|
0.47
|
50.6
|
75.0
|
|
34
|
0.47
|
49.0
|
73.6
|
|
21
|
0.47
|
46.0
|
70.7
|
|
14
|
0.47
|
41.3
|
66.2
|
Choose the right MobileNet model to fit your latency and size budget. The size of the network in memory and on disk is proportional to the number of parameters. The latency and power usage of the network scales with the number of Multiply-Accumulates (MACs) which measures the number of fused Multiplication and Addition operations. Top-1 and Top-5 accuracies are measured on the ILSVRC dataset. |
We are excited to share MobileNets with the open-source community. Information for getting started can be found at the TensorFlow-Slim Image Classification Library. To learn how to run models on-device please go to TensorFlow Mobile. You can read more about the technical details of MobileNets in our paper, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
Acknowledgements
MobileNets were made possible with the hard work of many engineers and
researchers throughout Google. Specifically we would like to thank:
Core Contributors: Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
Special thanks to: Benoit Jacob, Skirmantas Kligys, George
Papandreou, Liang-Chieh Chen, Derek Chow, Sergio Guadarrama, Jonathan
Huang, Andre Hentz, Pete Warden
MobileNets: Open-Source Models for Efficient On-Device Vision的更多相关文章
- Dynamic device virtualization
A system and method for providing dynamic device virtualization is herein disclosed. According to on ...
- EPPB also support BlackBerry device
各位看倌不是小弟要賣弄英文,實在是外國朋友希望知道上一篇"雲取證"中所用的工具Elcomsoft Phone Password Breaker支援黑莓機否?又要求非要看到截屏才算數 ...
- Vulkan Device Memory
1.通过下面的接口,可以获得显卡支持的所有内存类型: MemoryType的类型如下: 2.引用索引3对内存的描述 我们可以通过调用vkGetPhysicalDeviceMemoryPropertie ...
- Research Guide for Neural Architecture Search
Research Guide for Neural Architecture Search 2019-09-19 09:29:04 This blog is from: https://heartbe ...
- 斯坦福CS课程列表
http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...
- Python学习路程day18
Python之路,Day18 - Django适当进阶篇 本节内容 学员管理系统练习 Django ORM操作进阶 用户认证 Django练习小项目:学员管理系统设计开发 带着项目需求学习是最有趣和效 ...
- 卷积神经网络和CIFAR-10:Yann LeCun专访 Convolutional Nets and CIFAR-10: An Interview with Yann LeCun
Recently Kaggle hosted a competition on the CIFAR-10 dataset. The CIFAR-10 dataset consists of 60k 3 ...
- Computer Vision Algorithm Implementations
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...
- Python之路,Day15 - Django适当进阶篇
Python之路,Day15 - Django适当进阶篇 本节内容 学员管理系统练习 Django ORM操作进阶 用户认证 Django练习小项目:学员管理系统设计开发 带着项目需求学习是最有趣 ...
随机推荐
- CodeForces - 404B Marathon(精度)
题意:一个人绕着一个长度为a的正方形逆时针跑,以(0,0)为起点,喝一次水可以跑d米,问每喝一次水可以跑到的位置坐标. 分析:这道题卡精度卡的太厉害了. 设l是正方形的周长,只有d对l取余且每次跑d米 ...
- 用Spring中的ResponseEntity文件批量压缩下载
我看了很多网上的demo,先生成ZIP压缩文件,然后再下载. 我这里是生成ZIP文件流 进行下载.(核心代码没多少,就是一些业务代码) @RequestMapping(value = "/& ...
- ubuntu下解压.zip文件乱码
解决方法 查看文件: lsar BA_schur.zip 解压文件: unar BA_schur.zip
- 数据类型和C#关系对应
sqlserver与c#中数据类型的对应关系///private string changetocsharptype(string type){string reval=string.empty;sw ...
- JS高级学习笔记(10) 之 js 时怎么解析HTML标签的
DOM 节点类型 浏览器渲染过程 浏览器是怎么把HTML标签语言和JavaScript联系在一起的,这就是我们常说的DOM. 浏览器中的DOM解析器把HTML翻译成对象(object),然后JavaS ...
- C/C++学习笔记_gdb调试
1.前提条件:可执行文件包含调试信息 gcc -g 2.gdb 文件名 ---启动gdb调试 3.查看代码的命令 当前文件: list 行号(函数名) 指定文件: list 文件名:行号(函数名)4. ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 数据类型
使用编程语言进行编程时,需要用到各种变量来存储各种信息.变量保留的是它所存储的值的内存位置.这意味着,当创建一个变量时,就会在内存中保留一些空间. 可能需要存储各种数据类型(比如字符型.宽字符型.整型 ...
- idea以yarn-client 提交任务到yarn
鉴于很多小白经常问我如何用idea提交任务到yarn,这样测试的时候不用频繁打包. 昨天,晚上健身回来录了一个小视频,说是小视频但是耗时也比较长,将近40min.可能是健身脱水太多,忘了补充盐分,无力 ...
- Java集合--list接口
list是一个接口,实现类:Arraylist,Vector,Linkedlist list接口(有序): 常用方法 排除Collection中具有的之外的 添加功能 void add(int ind ...
- Zookeeper--Zookeeper单机安装
参考 https://www.cnblogs.com/lsdb/p/7297731.html https://zookeeper.apache.org/doc/r3.4.13/zookeeperSta ...