https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html

 Wednesday, June 14, 2017 
 
Posted by Andrew G. Howard, Senior Software Engineer and Menglong Zhu, Software Engineer

(Cross-posted on the Google Open Source Blog)

Deep learning has fueled tremendous progress in the field of computer
vision in recent years, with neural networks repeatedly pushing the frontier of visual recognition technology.
While many of those technologies such as object, landmark, logo and
text recognition are provided for internet-connected devices through the
Cloud Vision API, we
believe that the ever-increasing computational power of mobile devices
can enable the delivery of these technologies into the hands of our
users, anytime, anywhere, regardless of internet connection. However,
visual recognition for on device and embedded applications poses many
challenges — models must run quickly with high accuracy in a
resource-constrained environment making use of limited computation,
power and space.

Today we are pleased to announce the release of MobileNets, a family of mobile-first computer vision models for TensorFlow,
designed to effectively maximize accuracy while being mindful of the
restricted resources for an on-device or embedded application.
MobileNets are small, low-latency, low-power models parameterized to
meet the resource constraints of a variety of use cases. They can be
built upon for classification, detection, embeddings and segmentation
similar to how other popular large scale models, such as Inception, are used.

Example use cases include detection, fine-grain classification, attributes and geo-localization.

This release contains the model definition for MobileNets in TensorFlow using TF-Slim, as well as 16 pre-trained ImageNet classification checkpoints for use in mobile projects of all sizes. The models can be run efficiently on mobile devices with TensorFlow Mobile.

Model Checkpoint
Million MACs
Million Parameters
Top-1 Accuracy
Top-5 Accuracy
569
4.24
70.7
89.5
418
4.24
69.3
88.9
291
4.24
67.2
87.5
186
4.24
64.1
85.3
317
2.59
68.4
88.2
233
2.59
67.4
87.3
162
2.59
65.2
86.1
104
2.59
61.8
83.6
150
1.34
64.0
85.4
110
1.34
62.1
84.0
77
1.34
59.9
82.5
49
1.34
56.2
79.6
41
0.47
50.6
75.0
34
0.47
49.0
73.6
21
0.47
46.0
70.7
14
0.47
41.3
66.2
Choose the right
MobileNet model to fit your latency and size budget. The size of the
network in memory and on disk is proportional to the number of
parameters. The latency and power usage of the network scales with the
number of Multiply-Accumulates (MACs) which measures the number of fused
Multiplication and Addition operations. Top-1 and Top-5 accuracies are
measured on the ILSVRC dataset.

We are excited to share MobileNets with the open-source community. Information for getting started can be found at the TensorFlow-Slim Image Classification Library. To learn how to run models on-device please go to TensorFlow Mobile. You can read more about the technical details of MobileNets in our paper, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.

Acknowledgements
MobileNets were made possible with the hard work of many engineers and
researchers throughout Google. Specifically we would like to thank:

Core Contributors: Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

Special thanks to: Benoit Jacob, Skirmantas Kligys, George
Papandreou, Liang-Chieh Chen, Derek Chow, Sergio Guadarrama, Jonathan
Huang, Andre Hentz, Pete Warden

 

MobileNets: Open-Source Models for Efficient On-Device Vision的更多相关文章

  1. Dynamic device virtualization

    A system and method for providing dynamic device virtualization is herein disclosed. According to on ...

  2. EPPB also support BlackBerry device

    各位看倌不是小弟要賣弄英文,實在是外國朋友希望知道上一篇"雲取證"中所用的工具Elcomsoft Phone Password Breaker支援黑莓機否?又要求非要看到截屏才算數 ...

  3. Vulkan Device Memory

    1.通过下面的接口,可以获得显卡支持的所有内存类型: MemoryType的类型如下: 2.引用索引3对内存的描述 我们可以通过调用vkGetPhysicalDeviceMemoryPropertie ...

  4. Research Guide for Neural Architecture Search

    Research Guide for Neural Architecture Search 2019-09-19 09:29:04 This blog is from: https://heartbe ...

  5. 斯坦福CS课程列表

    http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...

  6. Python学习路程day18

    Python之路,Day18 - Django适当进阶篇 本节内容 学员管理系统练习 Django ORM操作进阶 用户认证 Django练习小项目:学员管理系统设计开发 带着项目需求学习是最有趣和效 ...

  7. 卷积神经网络和CIFAR-10:Yann LeCun专访 Convolutional Nets and CIFAR-10: An Interview with Yann LeCun

    Recently Kaggle hosted a competition on the CIFAR-10 dataset. The CIFAR-10 dataset consists of 60k 3 ...

  8. Computer Vision Algorithm Implementations

    Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...

  9. Python之路,Day15 - Django适当进阶篇

    Python之路,Day15 - Django适当进阶篇   本节内容 学员管理系统练习 Django ORM操作进阶 用户认证 Django练习小项目:学员管理系统设计开发 带着项目需求学习是最有趣 ...

随机推荐

  1. Stuts2与SpringMVC

    Struts2:一个基于MVC设计模式的Web应用框架,本质上相当于一个servlet.以WebWork为核心,采用拦截器的机制处理用户的请求(Filter). 轻量级的MVC框架.低侵入性,与业务代 ...

  2. js 获取时间对象

    1.当前系统时间   var date=new Date(); 2.字符串转时间对象  var date=new Date("2018-01-01"); 3.获取年份: var y ...

  3. 【转载】Emdedding向量技术在蘑菇街推荐场景的应用

    花名:越祈 部门:算法中心搜索策略组 入职时间:2017/06/01 主要从事蘑菇街推荐算法相关研发工作 蘑菇街是一家社会化导购电商平台,推荐一直是其非常重要的流量入口.在电商平台中,推荐的场景覆盖到 ...

  4. Neo4j--常用的查询语句

    参考 https://www.w3cschool.cn/neo4j 准备工作 插入一堆朝代节点 插入我大明皇帝节点 创建大明皇帝统治大明王朝的关系 看一下结果 WHERE WHERE 语法 WHERE ...

  5. Arduino学习——u8glib提供的字体样式

    Fonts, Capital A Height4 Pixel Height  U8glib Font FontStruct5 Pixel Height  04 Font 04 Font 04 Font ...

  6. linux 下shell 编写脚本

    linux 下shell 编写脚本: 1.程序结构练习:编写一个脚本,给定一个正整数,计算出这个数所有位的数字之和. 例如:程序给定输入123,那么应该返回1+2+3=6. 2.程序结构练习:编写一个 ...

  7. winform使用钩子限制windows热键

    新增类KeybordHookProc using System; using System.Collections.Generic; using System.Diagnostics; using S ...

  8. 关于DSP仿真软件CCS中断点和探针的简单理解

    关于DSP仿真软件CCS中断简单理解 (郑州大学姬祥老师编写) CCS中的2.0版本(实验所用)断点(Break Point) 和探针(Probe Point)之所以能组合使用,是因为我们在实现硬件仿 ...

  9. SQL基础教程(第2版)第7章 集合运算:练习题

    可能有些读者会对此感到惊讶:“同时使用 UNION 和 INTERSECT 时,不是 INTERSECT 会优先执行吗?”当然,从执行顺序上来说确实是从 INTERSECT 开始的, 但是在此之前,由 ...

  10. [极客大挑战 2019]Secret File

    0x00知识点 没有过滤file 使用php的file伪协议去读取文件 ?file=php://filter/convert.base64-encode/resource=flag.php 0x01解 ...