lly的数列询问

Description

这个问题很简单,lly lly lly给你一些提示,让你试着确定长度为n n n的数列A [1] A [2] ... A [n]的值,但是他想尽一切办法为大家降低难度:

因此lly lly lly会给定一些对你有用的m m m询问,每次询问lly lly lly会表明L,R,sum[L,R] L,R,sum [L,R] L,R,sum[L,R]:表示区间[L,R]的区间和(保证询问合法),让大家更好的解决这个问题,但是对于每个询问会有一个代价,代价就是(R−L)∗sum[L,R](R-L)* sum [L,R] (R−L)∗sum[L,R]。

那么问题就转化了,如何花费尽可能小的代价确定这个数列。

Input

输入第一行包括两个整数n,m(1≤n≤2∗105,0≤m≤5∗105)n,m(1 \leq n \leq 2*10^5,0 \leq m \leq 5*10^5)n,m(1≤n≤2∗105,0≤m≤5∗105)。

接下来有mmm行,每行包括三个整数,L,R,sum[L,R],(1≤L≤R≤n,sum[L,R]≤109)L,R,sum[L,R],(1 \leq L \leq R \leq n,sum[L,R] \leq 10^9)L,R,sum[L,R],(1≤L≤R≤n,sum[L,R]≤109)。

Output

输出包含一个整数,即最小花费,如果无论如何都无法确定这个数列就输出“lly tcl!”。

Sample Input 1

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

Sample Output 1

11

Sample Input 2

4 3
1 2 2
2 3 3
1 1 1

Sample Output 2

lly tcl!

Source

nuoyanli

思路

  • 题意:给我们一个长度为 n 的序列,但是我们不知道的它的元素是什么,之后给我们m个是提示,每次提示 给我一个们一个[L, R]区间 的元素和sum[L~R],每次提示有一个 最小的花费 (R−L)∗sum[L..R](R-L)*sum[L ..R](R−L)∗sum[L..R],问我们找出序列的n个元素是啥,需要的总共的最小花费是多少?

  • 分析:这题真实令人脑洞大开,对于这种区间元素是啥的题竟然可以转化成求 最小生成树 的问题(可惜本巨弱竟毫无察觉 ),对于这一题要求出序列的n个元素是啥?就等价于求出每个位置的前缀和 sum[ i ] ,我们已知 sum[0] = 0, 如果对于序列中的1~n点都 0 点联通(应用最小生成树的地方)的话,那么我们就能够求出所有的 sum[i],有了所有的sum[ i ] 之后我们通过相邻位置的前缀和相减就能够得到 n 个元素了,对于题目上的m次提示的条件我们就可以转化成 sum[R] - sum[L - 1], 以 L-1点 与R点之间建立一条 权值为 (R-L)* sum[L~R] 的边,这样根据m个条件建完图之后,用 Kruskal 或者 Prim 来跑一边最小生成树(在这个是时候我们要判断这个图能否全部连通),的出来的答案就是 总花费

  • 最后举个例子来证明可行,例如 1-3 的区间和为sum[3] - sum[0], 4 - 6的区间和为sum[6] - sum[4], 我们可以看到 如果 0与6联通 那么区间和 sum[ 6 ] - sum[0] == sum[6] - 0, 而在我们将 1-3、4-6区间,对应的 0 - 3 - 6 (这样我们就使 0 与 6间接联通了)联通的时候,那么这条边的边权和是 (sum[6] - sum[3]) + ( sum[3] - sum[0]) = sum[6] + sum[0], 这样我们就可以得到了 sum[6] 的值了。。。。。。。。。。。。。。。。。

题解

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; #define ll long long
const int Len = 5e5 + 10;
int n,m; struct Edge
{
ll u,v,w;
bool operator < (const Edge a) const { return w < a. w; }
} edge[Len]; int pre[Len]; ll find(ll x) { return x == pre[x] ? x : pre[x] = find(pre[x]); } void init()
{
for(int i = 0; i <= n; i ++)
pre[i] = i;
} int main()
{
/* freopen("A.txt","r",stdin); */
scanf("%d %d", &n, &m);
init();
ll l, r, sum;
for(int i = 0; i < m; i ++)
{
scanf("%lld %lld %lld", &l, &r, &sum);
edge[i] = (Edge){ l-1, r, (r - l)*sum };
} sort(edge, edge + m); int cnt = 0;
ll u, v, w, Sp = 0;
for(int i = 0; i < m; i ++)
{
u = edge[i].u, v = edge[i].v, w = edge[i].w;
int fu = find(u);
int fv = find(v);
if(fu != fv)
pre[fu] = fv, cnt ++, Sp += w;
} if(cnt < n) printf("lly tcl!\n");
else printf("%lld\n", Sp); return 0;
}

lly的数列询问(最小生成树 + 思维)的更多相关文章

  1. 计蒜客 28319.Interesting Integers-类似斐波那契数列-递推思维题 (Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 I)

    I. Interesting Integers 传送门 应该是叫思维题吧,反正敲一下脑壳才知道自己哪里写错了.要敢于暴力. 这个题的题意就是给你一个数,让你逆推出递推的最开始的两个数(假设一开始的两个 ...

  2. 【2013 ICPC亚洲区域赛成都站 F】Fibonacci Tree(最小生成树+思维)

    Problem Description Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do s ...

  3. hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 327680/327680 K (Java/Others) Total Submiss ...

  4. 【Uvalive 5834】 Genghis Khan the Conqueror (生成树,最优替代边)

    [题意] 一个N个点的无向图,先生成一棵最小生成树,然后给你Q次询问,每次询问都是x,y,z的形式, 表示的意思是在原图中将x,y之间的边增大(一定是变大的)到z时,此时最小生成数的值是多少.最后求Q ...

  5. UOJ14 DZY Loves Graph 并查集

    传送门 题意:给出一张$N$个点,最开始没有边的图,$M$次操作,操作为加入边(边权为当前的操作编号).删除前$K$大边.撤销前一次操作,每一次操作后询问最小生成树边权和.$N \leq 3 \tim ...

  6. zhengrui集训笔记2

    Day_6 计算几何 点积\Large 点积点积 叉积\Large 叉积叉积 极角\Large 极角极角 < π\piπ :叉积判断 else :atan2 旋转\Large 旋转旋转 左乘第一 ...

  7. Educatinal CF #122(Div. 2) E . Spanning Tree Queries

    这一场其实有重大的意义,因为是除夕跨年,不过我FST掉大分了(ks) 题意:给你一个n点,m条边的带权图,q次询问,每次给你\(x\),每个边权为\(abs(E[i].w-x)\)答案为所有询问最小生 ...

  8. 【做题】CF177G2. Fibonacci Strings——思维+数列

    题意:定义斐波那契字符串为: $f_1 = $ "a" \(f_2 =\) "b" \(f_n = f_{n-1} + f_{n-2}, \, n > 2 ...

  9. #6278. 数列分块入门 2(询问区间内小于某个值 xx 的元素个数)

    题目链接:https://loj.ac/problem/6278 题目大意:中文题目 具体思路:数列分块模板题,对于更新的时候,我们通过一个辅助数组来进行,对于原始的数组,我们只是用来加减,然后这个辅 ...

随机推荐

  1. 实验一 Linux系统与应用准备

    实验一 Linux系统与应用准备 项目 内容 作业归属 班级课程 作业要求 课程作业要求 学号-姓名 17041419-刘金林 作业学习目标 1.学习博客园软件开发者学习社区使用技巧和经验:2.学习M ...

  2. node代理遇到的坑记

    在进行前端mock地址代理时候,进行了webpack的node反向代理: 实际mock地址是:http://10.118.183.10/mock/hb/startwork/openredpacket ...

  3. ES6的原始类型数据——Symbol

    javascript中原始值,即基本数据类型,像Number,String,Boolean,undefined,Null都是基本类型值,保存在栈中,但是有个疑问: Symbol打印出来明明是个函数,具 ...

  4. kubeasz部署高可用kubernetes1.17.2 并实现traefik2.1.2部署

    模板机操作 # cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core) # uname -a //内核升级到4.4.X以后, 关于如何 ...

  5. .NET写入文件操作

    2018-01-16  22:44:35 许多程序需要记录运行日志,这就需要将程序运行记录写入本机,一般是.txt 文本或.csv 文件.具体操作如下: 一.C#   using System.IO; ...

  6. Deeplink推广,打开率很低怎么办?

    但凡做TOC业务的多多少少都会用到Deeplink,这是一个重要的运营手段.但用了Deeplink却没有达到预期的目标,打开率不尽人意,你有没有想过到底是什么原因? 在Deeplink这条路上,我们当 ...

  7. go极其ide的安装

    一.下载软件开发包 官网:https://golang.google.cn/ 二.   安装和配置SDK windows使用.msi一键安装 配置环境变量 GOROOT,自动的,默认将go安装到C:/ ...

  8. mybatis返回自增主键踩坑记

    背景 MyBatis 是支持定制化 SQL.存储过程以及高级映射的优秀的持久层框架.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis 可以对配置和原生Map ...

  9. liunx 安装 zookeeper(转)

    转自:https://www.cnblogs.com/expiator/p/9853378.html linux安装zookeeper及使用 一.安装条件 想要安装zookeeper,必须先在linu ...

  10. 利用EPX Studio将C/S程序转成B/S的方法详解(在线模块方式)

    采用 EPX 的在线模块,是最简单的方法,包括实现简单,客户端不需任何设置,客户使用就简单. 1. 设置服务器端参数(EPServer) 1.1 在服务配置工具选项卡中,设置服务项中的名称,路径,激活 ...