lly的数列询问

Description

这个问题很简单,lly lly lly给你一些提示,让你试着确定长度为n n n的数列A [1] A [2] ... A [n]的值,但是他想尽一切办法为大家降低难度:

因此lly lly lly会给定一些对你有用的m m m询问,每次询问lly lly lly会表明L,R,sum[L,R] L,R,sum [L,R] L,R,sum[L,R]:表示区间[L,R]的区间和(保证询问合法),让大家更好的解决这个问题,但是对于每个询问会有一个代价,代价就是(R−L)∗sum[L,R](R-L)* sum [L,R] (R−L)∗sum[L,R]。

那么问题就转化了,如何花费尽可能小的代价确定这个数列。

Input

输入第一行包括两个整数n,m(1≤n≤2∗105,0≤m≤5∗105)n,m(1 \leq n \leq 2*10^5,0 \leq m \leq 5*10^5)n,m(1≤n≤2∗105,0≤m≤5∗105)。

接下来有mmm行,每行包括三个整数,L,R,sum[L,R],(1≤L≤R≤n,sum[L,R]≤109)L,R,sum[L,R],(1 \leq L \leq R \leq n,sum[L,R] \leq 10^9)L,R,sum[L,R],(1≤L≤R≤n,sum[L,R]≤109)。

Output

输出包含一个整数,即最小花费,如果无论如何都无法确定这个数列就输出“lly tcl!”。

Sample Input 1

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

Sample Output 1

11

Sample Input 2

4 3
1 2 2
2 3 3
1 1 1

Sample Output 2

lly tcl!

Source

nuoyanli

思路

  • 题意:给我们一个长度为 n 的序列,但是我们不知道的它的元素是什么,之后给我们m个是提示,每次提示 给我一个们一个[L, R]区间 的元素和sum[L~R],每次提示有一个 最小的花费 (R−L)∗sum[L..R](R-L)*sum[L ..R](R−L)∗sum[L..R],问我们找出序列的n个元素是啥,需要的总共的最小花费是多少?

  • 分析:这题真实令人脑洞大开,对于这种区间元素是啥的题竟然可以转化成求 最小生成树 的问题(可惜本巨弱竟毫无察觉 ),对于这一题要求出序列的n个元素是啥?就等价于求出每个位置的前缀和 sum[ i ] ,我们已知 sum[0] = 0, 如果对于序列中的1~n点都 0 点联通(应用最小生成树的地方)的话,那么我们就能够求出所有的 sum[i],有了所有的sum[ i ] 之后我们通过相邻位置的前缀和相减就能够得到 n 个元素了,对于题目上的m次提示的条件我们就可以转化成 sum[R] - sum[L - 1], 以 L-1点 与R点之间建立一条 权值为 (R-L)* sum[L~R] 的边,这样根据m个条件建完图之后,用 Kruskal 或者 Prim 来跑一边最小生成树(在这个是时候我们要判断这个图能否全部连通),的出来的答案就是 总花费

  • 最后举个例子来证明可行,例如 1-3 的区间和为sum[3] - sum[0], 4 - 6的区间和为sum[6] - sum[4], 我们可以看到 如果 0与6联通 那么区间和 sum[ 6 ] - sum[0] == sum[6] - 0, 而在我们将 1-3、4-6区间,对应的 0 - 3 - 6 (这样我们就使 0 与 6间接联通了)联通的时候,那么这条边的边权和是 (sum[6] - sum[3]) + ( sum[3] - sum[0]) = sum[6] + sum[0], 这样我们就可以得到了 sum[6] 的值了。。。。。。。。。。。。。。。。。

题解

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; #define ll long long
const int Len = 5e5 + 10;
int n,m; struct Edge
{
ll u,v,w;
bool operator < (const Edge a) const { return w < a. w; }
} edge[Len]; int pre[Len]; ll find(ll x) { return x == pre[x] ? x : pre[x] = find(pre[x]); } void init()
{
for(int i = 0; i <= n; i ++)
pre[i] = i;
} int main()
{
/* freopen("A.txt","r",stdin); */
scanf("%d %d", &n, &m);
init();
ll l, r, sum;
for(int i = 0; i < m; i ++)
{
scanf("%lld %lld %lld", &l, &r, &sum);
edge[i] = (Edge){ l-1, r, (r - l)*sum };
} sort(edge, edge + m); int cnt = 0;
ll u, v, w, Sp = 0;
for(int i = 0; i < m; i ++)
{
u = edge[i].u, v = edge[i].v, w = edge[i].w;
int fu = find(u);
int fv = find(v);
if(fu != fv)
pre[fu] = fv, cnt ++, Sp += w;
} if(cnt < n) printf("lly tcl!\n");
else printf("%lld\n", Sp); return 0;
}

lly的数列询问(最小生成树 + 思维)的更多相关文章

  1. 计蒜客 28319.Interesting Integers-类似斐波那契数列-递推思维题 (Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 I)

    I. Interesting Integers 传送门 应该是叫思维题吧,反正敲一下脑壳才知道自己哪里写错了.要敢于暴力. 这个题的题意就是给你一个数,让你逆推出递推的最开始的两个数(假设一开始的两个 ...

  2. 【2013 ICPC亚洲区域赛成都站 F】Fibonacci Tree(最小生成树+思维)

    Problem Description Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do s ...

  3. hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 327680/327680 K (Java/Others) Total Submiss ...

  4. 【Uvalive 5834】 Genghis Khan the Conqueror (生成树,最优替代边)

    [题意] 一个N个点的无向图,先生成一棵最小生成树,然后给你Q次询问,每次询问都是x,y,z的形式, 表示的意思是在原图中将x,y之间的边增大(一定是变大的)到z时,此时最小生成数的值是多少.最后求Q ...

  5. UOJ14 DZY Loves Graph 并查集

    传送门 题意:给出一张$N$个点,最开始没有边的图,$M$次操作,操作为加入边(边权为当前的操作编号).删除前$K$大边.撤销前一次操作,每一次操作后询问最小生成树边权和.$N \leq 3 \tim ...

  6. zhengrui集训笔记2

    Day_6 计算几何 点积\Large 点积点积 叉积\Large 叉积叉积 极角\Large 极角极角 < π\piπ :叉积判断 else :atan2 旋转\Large 旋转旋转 左乘第一 ...

  7. Educatinal CF #122(Div. 2) E . Spanning Tree Queries

    这一场其实有重大的意义,因为是除夕跨年,不过我FST掉大分了(ks) 题意:给你一个n点,m条边的带权图,q次询问,每次给你\(x\),每个边权为\(abs(E[i].w-x)\)答案为所有询问最小生 ...

  8. 【做题】CF177G2. Fibonacci Strings——思维+数列

    题意:定义斐波那契字符串为: $f_1 = $ "a" \(f_2 =\) "b" \(f_n = f_{n-1} + f_{n-2}, \, n > 2 ...

  9. #6278. 数列分块入门 2(询问区间内小于某个值 xx 的元素个数)

    题目链接:https://loj.ac/problem/6278 题目大意:中文题目 具体思路:数列分块模板题,对于更新的时候,我们通过一个辅助数组来进行,对于原始的数组,我们只是用来加减,然后这个辅 ...

随机推荐

  1. 搭建flutter开发

    最近入坑flutter,dart还没开始学,搭环境就干了我一天半,不容易,记录一下, 我们先立个目标,这是我已经配好的,我是真的有强迫症,需要打四个对勾,真的不容易,我们一个一先说一下每一个都代表什么 ...

  2. 如何使用Kibana

    目录 前言 一.安装 二.加载自定义索引 三.如何搜索数据 四.如何切换中文 五.如何使用控制台 六.可视化图表 七.使用仪表盘 前言 Kibana 是为 Elasticsearch设计的开源分析和可 ...

  3. MySQL 统计行数的 count

    MySQL count() 函数我们并不陌生,用来统计每张表的函数.但如果你的表越来越大,并且是 InnoDB 引擎的话,会发现计算的速度会越来越慢.在这篇文章里,会先介绍 count() 实现的原理 ...

  4. Python进阶学习之面向对象

    目录 面向对象 私有属性 面向对象   python也有面向对象的编程,它与C++中的类有点相似.它也只是运算符重载,继承. class Test: num=0 def __init__(self): ...

  5. springBoot启动后 http://localhost:8080 地址无法访问

    http://localhpost:8080/hello 代码结构: 代码内容: @RestController public class HelloWordRestImpl implements H ...

  6. 广告行业中那些趣事系列7:实战腾讯开源的文本分类项目NeuralClassifier

    摘要:本篇主要分享腾讯开源的文本分类项目NeuralClassifier.虽然实际项目中使用BERT进行文本分类,但是在不同的场景下我们可能还需要使用其他的文本分类算法,比如TextCNN.RCNN等 ...

  7. Blazor-断开连接后重新加载浏览器

    在大多数情况下,Blazor将与以前相同的线路上重新连接到服务器.但有时无法重新连接,需要重新加载web浏览器才能使网站重新工作.如果服务器回收应用程序池,则需要手动重新加载页面在没有调试的情况下在I ...

  8. 保姆级教程!手把手教你使用Longhorn管理云原生分布式SQL数据库!

    作者简介 Jimmy Guerrero,在开发者关系团队和开源社区拥有20多年的经验.他目前领导YugabyteDB的社区和市场团队. 本文来自Rancher Labs Longhorn是Kubern ...

  9. 【转】使用ssh-copy-id 快速的配置免密登录

    1.在需要免密登录其他机器的主机上 生成公钥,私钥等. ssh-keygen -t rsa 回车回车回车 哪个用户登录就在哪个用户目录的.ssh目录下生成. 2.将以下命令做成脚本,因为环境不能下载, ...

  10. 遍历集合的常见方式,排序,用lambda表示是怎样的

       Collection集合的功能:            Object[] toArray() 将集合转成数组            Iterator iterator() 通过方法的调用 获取I ...