洛谷P1220关路灯【区间dp】
题目描述
某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。
为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。
现在已知老张走的速度为 \(1m/s\),每个路灯的位置(是一个整数,即距路线起点的距离,单位:\(m\))、功率(\(W\)),老张关灯所用的时间很短而可以忽略不计。
请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。
输入格式
第一行是两个数字\(n\)(表示路灯的总数)和 \(c\)(老张所处位置的路灯号);
接下来 \(n\) 行,每行两个数据,表示第 \(1\) 盏到第 \(n\) 盏路灯的位置和功率。数据保证路灯位置单调递增。
输出格式
一个数据,即最少的功耗(单位:\(J\),\(1J=1W×s\))。
输入输出样例
输入 #1
5 3
2 10
3 20
5 20
6 30
8 10
输出 #1
270
说明/提示
样例解释
此时关灯顺序为 3 4 2 1 5。
数据范围
\(1≤n≤50,1≤c≤n\)
分析
这个题从题目的意思,应该挺容易就能看出来是一个区间\(dp\),因为题意就是一个大爷在一个“区间”里关灯。所以就可以根据区间长度来进行状态转移。首先想到如果大爷关灯从\(i\)到\(j\),当然这并不代表关灯顺序,大爷关灯肯定是走过的路上的灯都关了,因为这肯定比走过不关再回来关要优。而在\(i\)到\(j\)这一段关了灯的区间里,大爷有两种位置情况,一种是在\(i\),也就是左边,另一种就是右边,所以我们的dp数组就可以根据这个来开,也就是\(dp[i][j][0]\)和\(dp[i][j][1]\)分别表示关了i,j之间的灯,然后在最左和最右两种位置的情况,而区间长度肯定是从最短到最长,最短为1,然后依次增加,所以每一次的\(dp[i][j]\)的状态都是从上一个转移下来的,也就是\(dp[i+1][j]\)和$dp[i][j-1],然后分别在左右端点两种,依次进行状态转移。而能耗的增量可以通过时间和区间里能耗的前缀和来进行转移,下边我用一个转移方程来进行一下具体说明:
首先是个转移方程:
\]
在这里,\(pos\)代表位置(这里的位置说的是下标,不是距离,但是pos数组存的是距离,用来计算时间)\(sum\)数组代表的是从\(i\)到\(j\)之外的能耗,\(sum\)需要一个预处理,下边单独说,这里先介绍含义,方便理解。这个状态转移方程的意思也就是\(i\)到\(j\)区间内,大爷在左边的时候,通过不同的上个状态的位置来进行转移,值得一提的是,因为此时大爷在左边界,所以肯定是由\(dp[i+1][j]\)转移而来,假如是由\(dp[i][j-1]\)转移来的话,应当在右侧,这就是下一个状态转移方程。继续看这个方程,从\(dp[i+1][j]\)转移而来,所以也有两种,左右边界各一种,在左边界时,他所需的时间就是\(pos[i+1] - pos[i]\),右边界时就是\(pos[j]-pos[i]\),而花费的功率就是sum乘以时间,分别为:\((pos[i+1] - pos[i])\times sum[i+1][j]\)和\((pos[j]-pos[i])\times sum[i+1][j]\),看到这里可能有人会有疑惑,从\(i\)到\(j\)之外的能耗为啥是\(i+1\)到\(j\)呢,现在我们来说一下\(sum\)的得出:我们先用\(val\)数组当做前缀和,区间\(i\)到\(j\)的能耗就是\(val[j]-val[i-1]\),\(sum[i][j]\)就是用\(val[n]\)减去上边的能耗,具体见代码。现在大概就都解释清楚了。然后就是两个关键的状态转移方程:
dp[i][j][1] = min(dp[i][j-1][1]+(pos[j]-pos[j-1])*sum[i][j-1],dp[i][j-1][0]+(pos[j]-pos[i])*sum[i][j-1])\]
就这样了,然后看一下代码加深一下理解⑧
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 55;
int pos[maxn];
int sum[maxn][maxn];
int dp[maxn][maxn][3];
int v[maxn];
int n,c;
int main(){
cin>>n>>c;
for(int i=1;i<=n;++i){
int w;
cin>>pos[i]>>w;
v[i]=v[i-1]+w;
}
memset(dp,0x3f,sizeof(dp));
dp[c][c][0] = dp[c][c][1] = 0;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
sum[i][j] = v[n] - (v[j] - v[i-1]);
}
}
for(int j = c;j<=n;++j){
for(int i=j-1;i>=1;--i){
dp[i][j][0] = min(dp[i+1][j][0]+(pos[i+1] - pos[i])*sum[i+1][j],dp[i+1][j][1]+(pos[j]-pos[i])*sum[i+1][j]);
dp[i][j][1] = min(dp[i][j-1][1]+(pos[j]-pos[j-1])*sum[i][j-1],dp[i][j-1][0]+(pos[j]-pos[i])*sum[i][j-1]);
}
}
int ans = min(dp[1][n][0],dp[1][n][1]);
cout<<ans<<endl;
}
洛谷P1220关路灯【区间dp】的更多相关文章
- 洛谷 P1220 关路灯 区间DP
题目描述 某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了 ...
- 洛谷P1220关路灯——区间DP
题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...
- 洛谷P1220关路灯[区间DP]
题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...
- 洛谷P1220关路灯[区间DP 提前计算代价]
题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...
- 洛谷 P1220 关路灯 题解
Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...
- 洛谷P1220 关路灯
洛谷1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关 ...
- P1220 关路灯——区间dp
P1220 关路灯 题目描述 某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一 ...
- 洛谷——P1220 关路灯
P1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉 ...
- 洛谷P1220 关路灯 题解 区间DP
题目链接:https://www.luogu.com.cn/problem/P1220 本题涉及算法:区间DP. 我们一开始要做一些初始化操作,令: \(p[i]\) 表示第i个路灯的位置: \(w[ ...
- 洛谷P1220 关路灯【区间dp】
题目:https://www.luogu.org/problemnew/show/P1220 题意:给定n盏灯的位置和功率,初始时站在第c盏处. 关灯不需要时间,走的速度是1单位/秒.问把所有的灯关掉 ...
随机推荐
- CVE-2020-0796永恒之黑复现POC EXP以及修复方案
描述: 北京时间3月12日,针对最新披露的SMB远程代码执行漏洞(CVE-2020-0796),微软官方发布了针对Windows 10/Server禁用SMBv3(SMB 3.1.1版本)协议压缩的安 ...
- (Java实现) 有重复元素排列问题
有重复元素的排列问题 [问题描述] 设R={ r1, r2 , -, rn}是要进行排列的n个元素.其中元素r1, r2 , -, rn可能相同.试设计一个算法,列出R的所有不同排列. [编程任务] ...
- Java实现 LeetCode 258 各位相加
258. 各位相加 给定一个非负整数 num,反复将各个位上的数字相加,直到结果为一位数. 示例: 输入: 38 输出: 2 解释: 各位相加的过程为:3 + 8 = 11, 1 + 1 = 2. 由 ...
- java实现第七届蓝桥杯四平方和
四平方和 四平方和 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1^ ...
- TZOJ 车辆拥挤相互往里走
102路公交车是crq经常坐的,闲来无聊,他想知道最高峰时车上有多少人,他发现这辆车只留一个门上下人,于是他想到了一个办法,上车时先数一下车上人员数目(crq所上的站点总是人不太多),之后就坐在车门口 ...
- MyBatis整合双数据源
有时候在项目中会遇到需要连接两个数据库的情况.本文就结合Spring和Mybatis来讲下怎么使用双数据源(或者是多数据源). 背景知识介绍 本文中实现多数据源的关键是Spring提供的Abstrac ...
- Java并发编程实战总结 (一)
前提 首先该场景是一个酒店开房的业务.为了朋友们阅读简单,我把业务都简化了. 业务:开房后会添加一条账单,添加一条房间排期记录,房间排期主要是为了房间使用的时间不冲突.如:账单A,使用房间1,使用时间 ...
- 深入浅出-TCP/IP协议族剖析&&Socket
Posted by 微博@Yangsc_o 原创文章,版权声明:自由转载-非商用-非衍生-保持署名 | Creative Commons BY-NC-ND 3.0 #简介 该篇文章主要回顾–TCP/I ...
- 详解SpringBoot(2.3)应用制作Docker镜像(官方方案)
关于<SpringBoot-2.3容器化技术>系列 <SpringBoot-2.3容器化技术>系列,旨在和大家一起学习实践2.3版本带来的最新容器化技术,让咱们的Java应用更 ...
- 96题--不同的二叉搜索树(java、中等难度)
题目描述:给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例如下: 分析:本题可用动态规划的方法求解. 设 dp[n] 表示以 1 ... n 为节点组成的二叉搜索树的种类 ...