知识点

  • scikit-learn 对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析。
  • 我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法。 我们将scikit-learn的线性回归算法应用于编程作业1.1的数据,并看看它的表现。
  • 一般来说,只要觉得数据有线性关系,LinearRegression类是我们的首选。如果发现拟合或者预测的不好,再考虑用其他的线性回归库。如果是学习线性回归,推荐先从这个类开始第一步的研究。
  • LinearRegression 的使用非常简单,主要分为两步:
    1. 使用 fit(x_train,y_train) 对训练集x, y进行训练。
    2. 使用 predict(x_test) 训练得到的估计器对输入为 x_test 的集合进行预测。( (x_test) 可以是测试集,也可以是需要预测的数据)

过程

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 导入数据
path = 'D:\BaiduNetdiskDownload\data_sets\ex1data1.txt' # pd.read_csv 将 TXT 文件读入并转化为数据框形式
# names 添加列名
# header 用指定的行来作为标题(表头),若原来无标题则设为 none
# 用到 Pandas 里面的 head( ) 函数读取数据(只能读取前五行)
data = pd.read_csv(path,header=None,names=['Population','Profit'])
data.head()


# 在训练集中插入一列1(其实是x0=1),方便我们可以使用向量化的解决方案来计算代价和梯度。
data.insert(0, 'Ones', 1) # set X(training set), y(target variable)
# 设置训练集X,和目标变量y的值
cols = data.shape[1] # 获取列数
X = data.iloc[:,0:cols-1] # 输入向量X为前cols-1列
y = data.iloc[:,cols-1:cols] # 目标变量y为最后一列 # 代价函数是应该是 numpy 矩阵,所以我们需要转换X和Y,然后才能使用它们。 我们还需要初始化 theta 。
X = np.array(X.values)
y = np.array(y.values)
theta = np.array([0,0])

核心代码:

from sklearn import linear_model

# 需要导入LinearRegression类,并将之实例化,并采用fit()方法已验证这些训练数据。
model = linear_model.LinearRegression()
model.fit(X, y) # fit(X, y)对训练集X, y进行训练

scikit-learn model的预测表现:

x = np.array(X[:, 1])
f = model.predict(X).flatten() # .flatten() 默认按行的方向降维 fig, ax = plt.subplots(figsize=(8,5))
ax.plot(x, f, 'r', label='Prediction')
ax.scatter(data.Population, data.Profit, label='Traning Data')
ax.legend(loc=2)
ax.set_xlabel('Population')
ax.set_ylabel('Profit')
ax.set_title('Predicted Profit vs. Population Size')
plt.show()

参考资料

python_sklearn机器学习算法系列之LinearRegression线性回归

吴恩达机器学习作业Python实现(一):线性回归

scikit-learn 线性回归算法库小结

编程作业1.1——sklearn机器学习算法系列之LinearRegression线性回归的更多相关文章

  1. sklearn机器学习算法--线性模型

    线性模型 用于回归的线性模型 线性回归(普通最小二乘法) 岭回归 lasso 用于分类的线性模型 用于多分类的线性模型 1.线性回归 LinearRegression,模型简单,不同调节参数 #2.导 ...

  2. sklearn机器学习算法--K近邻

    K近邻 构建模型只需要保存训练数据集即可.想要对新数据点做出预测,算法会在训练数据集中找到最近的数据点,也就是它的“最近邻”. 1.K近邻分类 #第三步导入K近邻模型并实例化KN对象 from skl ...

  3. 机器学习作业(五)机器学习算法的选择与优化——Matlab实现

    题目下载[传送门] 第1步:读取数据文件,并可视化: % Load from ex5data1: % You will have X, y, Xval, yval, Xtest, ytest in y ...

  4. 机器学习算法系列:FM分解机

    在线性回归中,是假设每个特征之间独立的,也即是线性回归模型是无法捕获特征之间的关系.为了捕捉特征之间的关系,便有了FM分解机的出现了.FM分解机是在线性回归的基础上加上了交叉特征,通过学习交叉特征的权 ...

  5. 如何用Python实现常见机器学习算法-1

    最近在GitHub上学习了有关python实现常见机器学习算法 目录 一.线性回归 1.代价函数 2.梯度下降算法 3.均值归一化 4.最终运行结果 5.使用scikit-learn库中的线性模型实现 ...

  6. java数据结构和算法编程作业系列篇-数组

    /** * 编程作业 2.1 向highArray.java程序(清单2.3)的HighArray类添加一个名为getMax()的方法,它返回 数组中最大关键字的值,当数组为空时返回-1.向main( ...

  7. Andrew Ng机器学习编程作业:Logistic Regression

    编程作业文件: machine-learning-ex2 1. Logistic Regression (逻辑回归) 有之前学生的数据,建立逻辑回归模型预测,根据两次考试结果预测一个学生是否有资格被大 ...

  8. Stanford coursera Andrew Ng 机器学习课程编程作业(Exercise 2)及总结

    Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.htm ...

  9. stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)

    本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...

随机推荐

  1. ES6与ES5的继承

    ES6 ES6中的类 类与ES5中的构造函数写法类似 区别在于属性要放入constructor中,静态方法和属性实列不会继承 <script> class Person{ height=& ...

  2. 075-PHP数组添加元素

    <?php $arr = array(); //定义一个数组,它没有任何元素 echo '增加元素之前数组中元素的个数为:' . count($arr); //输出数组个数 for ($i = ...

  3. C++使用 scanf函数

    最近看了下C++,有些地方和c语言 还是不太一样的,当我在做输入一个数字的时候发现了错误.. 所以在使用scanf()的时候需要加下面这段在头文件  顶部: #define _CRT_SECURE_N ...

  4. 留学论文Results部分英文写作句型整理

    本文分享曼切斯特大学全校语言项目负责人约翰·莫莱博士(Dr John Morley)给出的与结果介绍相关的句型,小编为大家整理了一下一共分为了11类,看完之后觉得非常有用,这里分享给大家,各位留学小伙 ...

  5. 数据结构必做题参考:实验一T1-20,实验2 T1

    实验一T1-10 #include <bits/stdc++.h> using namespace std; ; struct Book { string isbn; string nam ...

  6. 公告上下滚动基于Jquery

    前提  需要引入jquery  如果你用的单位不是px  修改的同时红色部分需保持一致 <!DOCTYPE html> <html> <head> <meta ...

  7. 【LeetCode】搜索旋转排序数组

    [问题]假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] ). 搜索一个给定的目标值,如果数组中存在这个 ...

  8. maven 依赖报错

    1 maven项目,在Intellij 右侧 Maven projects - Lifecycle - clean , validate, compile, ….,右击clean,选中Run ‘pro ...

  9. 快速幂(51Nod1046 A^B Mod C)

    快速幂也是比较常用的,原理在下面用代码解释,我们先看题. 51Nod1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. In ...

  10. SQL COOKBOOK SQL经典实例代码 笔记第一章代码

    -- SQL COOKBOOK CHAPTER1 -- 查看所有内容 select * from emp; -- 可以单列 select empno,ename,job,sal,mgr,hiredat ...