Divisors (求解组合数因子个数)【唯一分解定理】
Divisors
Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation?
Input
The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.
Output
For each instance, output a line containing exactly one integer -- the number of distinct divisors of Cnk. For the input instances, this number does not exceed 2 63 - 1.
Sample Input
5 1
6 3
10 4
Sample Output
2
6
16
思路:
之前用求逆元的方法可以将组合数的最终值求出来,但是这个题目并没有给出要mod的值,所以先将结果求出来然后用唯一分解定理求因子个数的思路行不通。(即使求出来,结果也肯定会爆LL,导致根本无法将整个数保留下来求因子个数)
后来尝试将阶乘的前几个的值求出来然后求因子个数最后将 每个个数 相乘就得到结果
例如:C(9,3)
= 9 * 8 * 7
3 * 2 * 1
先将 9/3=3 的因子个数 2
8/2=4 的因子个数 3
7/1=7 的因子个数 2
然后 相乘 即: 2*3*2=12 即为答案
但是这样也是错的,因为这样 可能会导致后面的数分母不能化为1
例如: C(10,5)
= 10 * 9 * 8 * 7 * 6
5 * 4 * 3 * 2 * 1
先将10/5=2的 因子个数 2
9/4= ??这就错了
*************************************************************************************************************************************************
后来听同学的思路:
1.将1~431的每个素数个数用数组存起来
例: 10
sum[10][2]=1;
sum[10][3]=0;
sum[10][5]=1;
:
:
同时最好可以在打表的时候将n!对应素数个数直接存起来(特别好实现):
num[i][prime[j]]=num[i-1][prime[j]]+count1 ///就可以了
2.求出分母的每个素数的个数
3.求出分子的每个素数的个数
4.将上面的数目对应相减就是最终值通过唯一分解定理得出的素数乘积
例:C(9,3)
9 =3^2 3=3^1
8=2^3 2=2^1
7=7^1 1=2^0
即: 3^2 * 2^3 * 7^1
3^1 * 2^1 * 2^0
结果: 3^1 * 7^1 * 2^2
所以: (1+1)* (1+1) * (2+1)=12;
*************************************************************************************************************************************************
AC代码:
#include<stdio.h>
typedef long long LL;
int prime[505],flag[505];
void allprime()
{
int count=0;
for(int i=2;i<=431;i++){
if(flag[i]==0){
prime[count++]=i;
}
for(int j=0;j<count&&prime[j]*i<=431;j++){
flag[i*prime[j]]=1;
if(i%prime[j]==0){
break;
}
}
}/// 82个
} //欧拉筛素数
int num[505][505];
int up,down;
int main()
{
allprime();
for(int i=1;i<=431;i++){
int num1=i;
for(int j=0;j<=82;j++){
int count1=0;
while(num1%prime[j]==0){
count1++;
num1/=prime[j];
}
num[i][prime[j]]=num[i-1][prime[j]]+count1;
}
} //打表
//printf("*%d\n",num[9][3]);
int n,k;
while(~scanf("%d%d",&n,&k)){
LL sum=1;
for(int i=0;i<=82;i++){
up=num[n][prime[i]]-num[n-k][prime[i]];
down=num[k][prime[i]];
sum*=(up-down+1);
}
printf("%lld\n",sum);
}
return 0;
}
Divisors (求解组合数因子个数)【唯一分解定理】的更多相关文章
- HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...
- POJ1845Sumdiv(求所有因子和 + 唯一分解定理)
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 17387 Accepted: 4374 Descripti ...
- Divisors_组合数因子个数
Description Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- ...
- POJ 2992 Divisors (求因子个数)
题意:给n和k,求组合C(n,k)的因子个数. 这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE.所以得用别的方法. 在说方 ...
- 2018.09.28 牛客网contest/197/A因子(唯一分解定理)
传送门 比赛的时候由于变量名打错了调了很久啊. 这道题显然是唯一分解定理的应用. 我们令P=a1p1∗a2p2∗...∗akpkP=a_1^{p_1}*a_2^{p_2}*...*a_k^{p_k}P ...
- Almost All Divisors(求因子个数及思维)
---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...
- UVA294DIvisors(唯一分解定理+约数个数)
题目链接 题意:输入两个整数L,U(L <= U <= 1000000000, u - l <= 10000),统计区间[L,U]的整数中哪一个的正约数最多,多个输出最小的那个 本来 ...
- hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- B - Common Divisors (codeforces)数论算法基本定理,唯一分解定理模板
You are given an array aa consisting of nn integers. Your task is to say the number of such positive ...
随机推荐
- Python __str__(self)
python 在打印一个实例化对象时,打印的是对象的地址,比如:<__main__.Workers object at 0x00000000255A9AC8> 而__str__(self) ...
- multipart_formdata
import requests def sendImg(img_path, img_name, img_type='image/jpeg'): """ :param im ...
- [Wireshark]_002_玩转数据包
通过前一篇文章,我们大概了解了Wireshark,现在可以准备好进行数据包的捕获和分析了.这一片我们将讲到如何使用捕获文件,分析数据包以及时间格式显示等. 1.使用捕获文件 进行数据包分析时,其实很大 ...
- eclipse中生成文档注释--javadoc的使用
1.针对于单一的JAVA文件,在终端窗口中,使用 javadoc 文件名.java 即可生成文档注释: 2.在eclipse中生成文档注释: ①单击eclipse菜单栏中的[Project]菜单,该菜 ...
- SSI PAYLOAD
<pre><!--#exec cmd="ls" --></pre><pre><!--#echo var="DATE_ ...
- 使用turtle库绘制一个六角形
from turtle import * color("black","red") begin_fill() pu() fd(-200) pd() seth(3 ...
- Java实现 LeetCode 754 到达终点数字(暴力+反向)
754. 到达终点数字 在一根无限长的数轴上,你站在0的位置.终点在target的位置. 每次你可以选择向左或向右移动.第 n 次移动(从 1 开始),可以走 n 步. 返回到达终点需要的最小移动次数 ...
- Java实现蓝桥杯 算法训练 Professor Monotonic's Network
试题 算法训练 Professor Monotonic's Network 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 无聊的教授最近在做一项关于比较网络的实验.一个比较网络由若 ...
- Java实现 LeetCode 147 对链表进行插入排序
147. 对链表进行插入排序 对链表进行插入排序. 插入排序的动画演示如上.从第一个元素开始,该链表可以被认为已经部分排序(用黑色表示). 每次迭代时,从输入数据中移除一个元素(用红色表示),并原地将 ...
- Java实现 LeetCode 72 编辑距离
72. 编辑距离 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字 ...