模块 heapq_堆排序
_heapq_堆排序
该模块提供了堆排序算法的实现。堆是二叉树,最大堆中父节点大于或等于两个子节点,最小堆父节点小于或等于两个子节点。
创建堆
heapq有两种方式创建堆, 一种是使用一个空列表,然后使用heapq.heappush()函数把值加入堆中,另外一种就是使用heap.heapify(list)转换列表成为堆结构
import heapq
# 第一种
"""
函数定义:
heapq.heappush(heap, item)
- Push the value item onto the heap, maintaining the heap invariant.
heapq.heappop(heap)
- Pop and return the smallest item from the heap, maintaining the heap invariant.
If the heap is empty, IndexError is raised. To access the smallest item without popping it, use heap[0].
"""
nums = [2, 3, 5, 1, 54, 23, 132]
heap = []
for num in nums:
heapq.heappush(heap, num) # 加入堆
print(heap[0]) # 如果只是想获取最小值而不是弹出,使用heap[0]
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
# 第二种
nums = [2, 3, 5, 1, 54, 23, 132]
heapq.heapify(nums)
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
heapq 模块还有一个heapq.merge(*iterables) 方法,用于合并多个排序后的序列成一个排序后的序列, 返回排序后的值的迭代器。
类似于sorted(itertools.chain(*iterables)),但返回的是可迭代的。
"""
函数定义:
heapq.merge(*iterables)
- Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple log files). Returns an iterator over the sorted values.
- Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).
"""
import heapq
num1 = [32, 3, 5, 34, 54, 23, 132]
num2 = [23, 2, 12, 656, 324, 23, 54]
num1 = sorted(num1)
num2 = sorted(num2)
res = heapq.merge(num1, num2)
print(list(res))
访问堆内容
堆创建好后,可以通过`heapq.heappop() 函数弹出堆中最小值。
import heapq
nums = [2, 43, 45, 23, 12]
heapq.heapify(nums)
print(heapq.heappop(nums))
# out: 2
# 如果需要所有堆排序后的元素
result = [heapq.heappop(nums) for _ in range(len(nums))]
print(result)
# out: [12, 23, 43, 45]
如果需要删除堆中最小元素并加入一个元素,可以使用heapq.heaprepalce() 函数
import heapq
nums = [1, 2, 4, 5, 3]
heapq.heapify(nums)
heapq.heapreplace(nums, 23)
print([heapq.heappop(nums) for _ in range(len(nums))])
# out: [2, 3, 4, 5, 23]
获取堆最大或最小值
如果需要获取堆中最大或最小的范围值,则可以使用heapq.nlargest() 或heapq.nsmallest() 函数
"""
函数定义:
heapq.nlargest(n, iterable[, key])¶
- Return a list with the n largest elements from the dataset defined by iterable.
- key if provided, specifies a function of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower
- Equivalent to: sorted(iterable, key=key, reverse=True)[:n]
"""
import heapq
nums = [1, 3, 4, 5, 2]
print(heapq.nlargest(3, nums))
print(heapq.nsmallest(3, nums))
"""
输出:
[5, 4, 3]
[1, 2, 3]
"""
这两个函数还接受一个key参数,用于dict或其他数据结构类型使用
import heapq
from pprint import pprint
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
pprint(cheap)
pprint(expensive)
"""
输出:
[{'name': 'YHOO', 'price': 16.35, 'shares': 45},
{'name': 'FB', 'price': 21.09, 'shares': 200},
{'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50},
{'name': 'ACME', 'price': 115.65, 'shares': 75},
{'name': 'IBM', 'price': 91.1, 'shares': 100}]
"""
heapq应用
实现heap堆排序算法
>>> def heapsort(iterable):
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
该算法和sorted(iterable) 类似,但是它是不稳定的。
堆的值可以是元组类型,可以实现对带权值的元素进行排序。
>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))
>>> heappop(h)
(1, 'write spec')
模块 heapq_堆排序的更多相关文章
- [PY3]——heap模块 和 堆排序
heapify( ) heapify()函数用于将一个序列转化为初始化堆 nums=[16,7,3,20,17,8,-1] print('nums:',nums) show_tree(nums) nu ...
- 算法 排序NB二人组 堆排序 归并排序
参考博客:基于python的七种经典排序算法 常用排序算法总结(一) 序前传 - 树与二叉树 树是一种很常见的非线性的数据结构,称为树形结构,简称树.所谓数据结构就是一组数据的集合连同它们的储 ...
- day39 算法基础
参考博客: http://www.cnblogs.com/alex3714/articles/5474411.html http://www.cnblogs.com/wupeiqi/articles/ ...
- [PY3]——实现一个优先级队列
import heapq class PriorityQueue: def __init__(self): self._queue=[] self._index=0 def push(self,ite ...
- python 冒泡排序,快排
一.冒泡排序 1.1.冒泡的原理 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有的 ...
- Python常用数据结构之heapq模块
Python数据结构常用模块:collections.heapq.operator.itertools heapq 堆是一种特殊的树形结构,通常我们所说的堆的数据结构指的是完全二叉树,并且根节点的值小 ...
- python下实现二叉堆以及堆排序
python下实现二叉堆以及堆排序 堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆 ...
- 使用deque模块固定队列长度,用headq模块来查找最大或最小的N个元素以及实现一个优先级排序的队列
一. deque(双端队列) 1. 使用 deque(maxlen=N)会新建一个固定大小的队列.当新的元素加入并且这个队列已满的时候,最老的元素会自动被移除掉 >>> from c ...
- NB二人组(一)----堆排序
堆排序前传--树与二叉树简介 特殊且常用的树--二叉树 两种特殊的二叉树 二叉树的存储方式 二叉树小结 堆排序 堆这个玩意....... 堆排序过程: 构造堆: 堆排序的算法程序(程序需配合着下图理 ...
随机推荐
- Java大浮点数精度
BigDecimal 精度问题 BigDecimal舍入模式 ROUND_DOWN 向零舍入. 即1.55 变为 1.5 , -1.55 变为-1.5 ROUND_UP 向远离0的方向舍入 即 1.5 ...
- Maven项目中的packaging标签
<packaging>XXX</packaging> 项目的打包类型xxx:pom.jar.war.(packing默认是jar类型). pom是最简单的打包类型,pom 项目 ...
- springboot自动装配原理回顾、配置文件分析
配置文件 spring boot官方文档 官方外部配置文件说明参考文档 自动配置原理分析 1. SpringBoot启动的时候加载主配置类,开启了自动配置功能@EnableAutoConfigurat ...
- 初识 jquery.simulate.js 模拟键盘事件
用jquery 和 jquery.simulate.js 实现模拟键盘事件,点击上下左右div相当于点击键盘的上下左右键 <!DOCTYPE html> <html> < ...
- react-intl 实现 React 国际化多语言
效果预览 React Intl 国际化步骤 创建国际化资源文件 根据语言获取国际化资源 引入 react-intl 的 local data 创建 LocaleProvider 国际化上下文组件 创建 ...
- PxCook+photoshop实现傻瓜式切图(推荐小白使用)
确定需求 刚入门前端的小伙伴经过一个阶段的学习,已经准备小试牛刀了.但看到设计师给出的psd图,又头疼了,天啊撸,怎么办,我不会切图啊.今天我就带领小白学习傻瓜式切图.包学包会.( ̄▽ ̄)" ...
- Java 读取Word中的脚注、尾注
本文介绍读取Word中的脚注及尾注的方法,添加脚注.尾注可以参考这篇文章. 注:本文使用了Word类库(Free Spire.Doc for Java 免费版)来读取,获取该类库可通过官网下载,并解压 ...
- mui中如何使用tab来切换子页面 mui-bar, mui-bar-tab
mui是前端框架但是很多人用它写移动端 那么mui底部切换是怎么做到的呢? 如何点击某个tab来切换不同的页面? 解答: 1首先我们需要引入mui框架的底部tab元素 代码如下 <!--tabl ...
- django 登录、注册
一.登录 1.在blogapp同级目录下新建一个userapp python manage.py startapp users 目录结构如下: 2.在主项目urls.py中新建users的includ ...
- 结题报告--P2441角色属性树
题目:点此 题目描述 绪萌同人社是一个有趣的组织,该组织结构是一个树形结构.有一个社长,直接下属一些副社长.每个副社长又直接下属一些部长……. 每个成员都有一个萌点的属性,萌点属性是由一些质数的萌元素 ...