C. Mind Control

You and your n−1 friends have found an array of integers a1,a2,…,an. You have decided to share it in the following way: All n of you stand in a line in a particular order. Each minute, the person at the front of the line chooses either the first or the last element of the array, removes it, and keeps it for himself. He then gets out of line, and the next person in line continues the process.

You are standing in the m-th position in the line. Before the process starts, you may choose up to k different people in the line, and persuade them to always take either the first or the last element in the array on their turn (for each person his own choice, not necessarily equal for all people), no matter what the elements themselves are. Once the process starts, you cannot persuade any more people, and you cannot change the choices for the people you already persuaded.

Suppose that you’re doing your choices optimally. What is the greatest integer x such that, no matter what are the choices of the friends you didn’t choose to control, the element you will take from the array will be greater than or equal to x?

Please note that the friends you don’t control may do their choice arbitrarily, and they will not necessarily take the biggest element available.

Input

The input consists of multiple test cases. The first line contains a single integer t (1≤t≤1000) — the number of test cases. The description of the test cases follows.

The first line of each test case contains three space-separated integers n, m and k (1≤m≤n≤3500, 0≤k≤n−1) — the number of elements in the array, your position in line and the number of people whose choices you can fix.

The second line of each test case contains n positive integers a1,a2,…,an (1≤ai≤109) — elements of the array.

It is guaranteed that the sum of n over all test cases does not exceed 3500.

Output

For each test case, print the largest integer x such that you can guarantee to obtain at least x.

Example

inputCopy

4

6 4 2

2 9 2 3 8 5

4 4 1

2 13 60 4

4 1 3

1 2 2 1

2 2 0

1 2

outputCopy

8

4

1

1

Note

In the first test case, an optimal strategy is to force the first person to take the last element and the second person to take the first element.

the first person will take the last element (5) because he or she was forced by you to take the last element. After this turn the remaining array will be [2,9,2,3,8];

the second person will take the first element (2) because he or she was forced by you to take the first element. After this turn the remaining array will be [9,2,3,8];

if the third person will choose to take the first element (9), at your turn the remaining array will be [2,3,8] and you will take 8 (the last element);

if the third person will choose to take the last element (8), at your turn the remaining array will be [9,2,3] and you will take 9 (the first element).

Thus, this strategy guarantees to end up with at least 8. We can prove that there is no strategy that guarantees to end up with at least 9. Hence, the answer is 8.

In the second test case, an optimal strategy is to force the first person to take the first element. Then, in the worst case, both the second and the third person will take the first element: you will end up with 4.

题目大意:

总共有n个人和n个数字

n个人拍成一队,n个数字也是有顺序的

你排在第m个位置

按照顺序的每个人可以拿走这个序列中的第一个数字或者最后一个数字

你可以在所有人操作开始前说服最多k个人

让他们固定拿这个序列的第一个或者是最后一个数字

问你在所有可能的情况中可以拿到的数字的最大值中的最小值(即,到你取得的时候,首尾两个数字你总是会取最大的那个,问这些数字中的最小值)



AC代码:

#include <bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
int a[3510];
int main()
{
int T,n,m,k;
cin>>T;
while(T--)
{
cin>>n>>m>>k;
k=min(k,m-1);
for (int i = 1; i <= n; i++)
cin>>a[i];
int ans = 0;
for (int i = 0; i <= k; i++)
{
int mn = INF;
for (int j = i + 1; j <= m - k + i; j++)
mn = min(mn, max(a[j], a[j + n - m]));
ans = max(ans, mn);
}
cout<<ans<<endl;
}
return 0;
}

Codeforces 1291 Round #616 (Div. 2) C. Mind Control(超级详细)的更多相关文章

  1. Codeforces 1291 Round #616 (Div. 2) B

    B. Array Sharpening time limit per test1 second memory limit per test256 megabytes inputstandard inp ...

  2. Codeforces Round #616 (Div. 2) C. Mind Control

    题目链接:http://codeforces.com/contest/1291/problem/C 思路: 我们可以很容易想到,只有前m-1个人才能影响m的选择的大小,后面的人无法影响. 如果所有人都 ...

  3. Codeforces Beta Round #80 (Div. 2 Only)【ABCD】

    Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...

  4. Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】

    Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...

  5. Codeforces Beta Round #79 (Div. 2 Only)

    Codeforces Beta Round #79 (Div. 2 Only) http://codeforces.com/contest/102 A #include<bits/stdc++. ...

  6. Codeforces Beta Round #77 (Div. 2 Only)

    Codeforces Beta Round #77 (Div. 2 Only) http://codeforces.com/contest/96 A #include<bits/stdc++.h ...

  7. Codeforces Beta Round #76 (Div. 2 Only)

    Codeforces Beta Round #76 (Div. 2 Only) http://codeforces.com/contest/94 A #include<bits/stdc++.h ...

  8. Codeforces Beta Round #75 (Div. 2 Only)

    Codeforces Beta Round #75 (Div. 2 Only) http://codeforces.com/contest/92 A #include<iostream> ...

  9. Codeforces Beta Round #74 (Div. 2 Only)

    Codeforces Beta Round #74 (Div. 2 Only) http://codeforces.com/contest/90 A #include<iostream> ...

随机推荐

  1. Python Requests-学习笔记(5)-响应状态码

    我们可以检测响应状态码: r = requests.get('http://httpbin.org/get') r.status_code 为方便引用,Requests还附带了一个内置的状态码查询对象 ...

  2. CSS也能计算:calc

    举个例子ul li适配屏幕,如果加个border:1px,不用border-content得情况下,每个li多加了2px: <ul><li></li><li& ...

  3. work of weekend 12/12/2015~12/14/2015

    part 组员                周末工作+今日工作 工作耗时/h 明日计划 工作耗时/h backup 冯晓云 try the backup plan:brower:rewrite bi ...

  4. Cucumber(4)——jenkins的集成

    目录 回顾 必备知识 集成方法 回顾 在上几节中,关于cucumber的知识我已经全部的介绍完了,但是近期,jenkins大行其道,在工作上面能为我们节省大量的时间. 所以在本节中,我会介绍cucum ...

  5. Linux下安装python3环境搭建

    Linux下python3环境搭建 Linux安装软件有哪些方式? rpm软件包 手动安装 拒绝此方式 需要手动解决依赖关系 yum自动化安装 自动处理依赖关系 非常好用 源代码编译安装,可自定义的功 ...

  6. SpringBoot系列(九)单,多文件上传的正确姿势

    SpringBoot系列(九)分分钟解决文件上传 往期推荐 SpringBoot系列(一)idea新建Springboot项目 SpringBoot系列(二)入门知识 springBoot系列(三)配 ...

  7. vs 类型定义及语句,随机数

    1  类型定义: 1)小数: 类型         变量名           赋值 decimal       d   :              d=1.2m float             ...

  8. [YII2] 文件上传类

    //测试文件上传类 public function actionCreate() { $model = new Lvyou(); $upload_model = new \app\models\Upl ...

  9. Laravel - 上手实现 - 文件上传、保存到 public 目录下

    1.为了访问方便,将上传的文件保存在 public 目录下,需要进行修改配置. 找到 config/filesystems.php 文件然后修改 root.具体如下: 'local' => [ ...

  10. BIOS时间与系统时间(windows/linux时间同步问题)

    写作动机 双系统是不少人喜欢的方式,但安装双系统之后一般会出现两个系统时间不一样的问题,刚开始用双系统的时候也没怎么在意,就是装上后在网上找找相关解决方法,复制粘贴代码完事儿.但是次数多了就有点烦了, ...