MindSpore 高阶优化器

MindSpore自研优化器THOR(Trace-based Hardware-driven layer-ORiented Natural Gradient Descent Computation),该优化器在ImageNet上训练ResNet50,使用MindSpore+8 Ascend 910 仅需66.7分钟,当使用256节点时仅需2.7分钟!

关于一二阶优化器,其中二阶优化器与一阶优化器相比收敛速度更快,但缺点是二阶信息矩阵求逆复杂度高,为

, 其中 n 为二阶信息矩阵维度,当模型参数量为

时,对应的二阶信息矩阵的大小为 

。在深度学习模型中, 

常常在数百万的量级,此时二阶信息矩阵的逆无法计算。因此如何降低二阶信息矩阵求逆的计算复杂度成为关键问题。

MindSpore针对该问题,提出了自研算法THOR,该算法是基于自然梯度法,对Fisher矩阵做了近似,自然梯度法中的 

矩阵可以表示为:

其中

是网络模型的预测分布,

是其概率密度, 

是需要网络模型的参数。

那THOR主要做了哪些改进呢,我们一起来看一下:

1. 降低二阶信息矩阵更新频率

通过实验观察

矩阵的F范数(Frobenius norm),在前期变化剧烈,后期逐渐变稳定,从而假设

是一个马尔可夫过程,可以收敛到一个稳态分布π,其中 

代表第k个迭代时的

矩阵。因此,在训练过程中逐步增大

矩阵的更新间隔,可以在不影响收敛速度的情况下,减少训练时间。例如在ResNet50中,更新间隔步数随着训练的进行越来越大,到后期每个epoch只需更新一次二阶信息矩阵,如下图所示。

THOR受KFAC启发,将

矩阵按层解耦来降低矩阵复杂度,分别针对每一层的

矩阵做实验,发现有些层的

矩阵趋于稳态的速度更快,因此在统一的更新间隔上,更加细粒度的去调整每一层的更新频率。THOR使用矩阵的迹作为判断条件,当迹的变化情况大于某一阈值时,更新该层的二阶信息矩阵,否则沿用上一个迭代的二阶信息矩阵,并且引入了停止更新机制,当迹的变化量小于某个阈值时,停止更新该层二姐信息矩阵,具体更新公式如下:

2. 硬件感知矩阵切分

THOR在将

矩阵按层解耦的基础上,进一步假设每个网络层中的输入和输出块之间也是独立的,例如将每层网络的输入输出切分为n个块,这n个块之间即是独立的,根据该假设,对二阶信息矩阵做进一步的切分,从而提高了计算效率。THOR结合矩阵信息损失数据和矩阵性能数据确定了矩阵分块维度,从而大大提升

矩阵求逆时间。

那么如何确定矩阵分块维度的呢。具体方法为:

(1)根据

矩阵中维度最大的那一层,确定矩阵切分维度,拿ReseNet-50举例,网络层中的最大维度为2048,确定矩阵切分维度为[1,16,32,64,128,256,512,1024,2048];

(2)根据确定的矩阵维度,根据谱范数计算每个维度下的矩阵损失,具体公式为

其中 

表示矩阵 X 的最大特征值, A 表示原始未分割矩阵,

表示分割后的矩阵。然后统计在该维度下损失小于1%的矩阵数量,最后通过除以总的矩阵数量得到标准化后的矩阵损失信息。

(3)根据确定的矩阵维度,计算每个维度下的矩阵求逆时间,再通过公式

得到每个维度下标准化后性能数据,其中

表示维度最小的矩阵的性能数据,

表示第n个维度下的性能数据。

(4)根据标注化后的矩阵损失信息和标准化后的性能数据绘图,如以ResNet50为例,可得到下图,图中交叉点为106,与128最接近,最后确定矩阵切分维度为128。

3. 实验结果

下图展示了THOR在ResNet50+ImageNet,batchsize为256时一二阶上的训练曲线图。

图中的THOR,THOR_stopTHOR_NT分表表示 ,从图中可以看到THOR收敛所需迭代数大约是一阶的一半,且单step的时间与一阶相差也不大。相比一阶算法需要117min,二阶优化器端到端时间提速约40%。

THOR还测试了在不同batchsize下ResNet50+ImageNet的收敛结果,结果见下表,当batchsize为8192,使用256块Ascend 910时,只需2.7分钟精度即可收敛到75.9%,该结果在业界也是非常有竞争力的。MindSpore团队还会将THOR进一步应用到NLP领域中,如Bert和GPT-3,THOR在NLP任务上的表现。

MindSpore 高阶优化器的更多相关文章

  1. Python进阶-IV-Wrapper高阶

    一.装饰器回顾: 1.标准的装饰器示例 def trapper(func): def inner(*args, **kwargs): print('插入到被装饰函数前的功能!') res = func ...

  2. ES 6 装饰器与 React 高阶组件

    关于 Decorator 到底是 ES 6 引入的还是 ES 7 引入的我也不是很明白了,两种说法都有,这种问题懒得纠结了--在用的时候发现这个东西很好用,平常用处可能不大,但是结合 React 就很 ...

  3. python开发基础04-函数、递归、匿名函数、高阶函数、装饰器

    匿名函数 lamba lambda x,y,z=1:x+y+z 匿名就是没有名字 def func(x,y,z=1): return x+y+z 匿名 lambda x,y,z=1:x+y+z #与函 ...

  4. python 函数式编程 高阶函数 装饰器

    # -*- coding:gb2312 -*- #coding=utf-8 # 高阶函数 import math def is_sqr(x): y = int(math.sqrt(x)) return ...

  5. python 高阶函数与装饰器

    高阶函数定义1.函数接收的参数是一个函数名2.函数的返回值是一个函数名以上两者满足任意一个,就是高阶函数装饰器定义本质就是函数,功能是为其他函数添加新功能 装饰器的原则 1.不修改被装饰函数的源代码( ...

  6. python笔记十三(高阶函数、装饰器)

    一.高阶函数 函数只要有以下两个特征中一个就可以称为高阶函数: a:函数名作为一个实参传入另一个函数中 b:函数的返回值中包含函数名 下面我们用代码来感受一下这两种形式: import time # ...

  7. Python高阶函数之 - 装饰器

    高阶函数:  1. 函数名可以作为参数传入     2. 函数名可以作为返回值. python装饰器是用于拓展原来函数功能的一种函数 , 这个函数的特殊之处在于它的返回值也是一个函数 , 使用pyth ...

  8. Python学习笔记【第六篇】:迭代器、生成器、高阶函数、装饰器

    迭代器 迭代器是访问集合元素的一种方式,迭代器从对象的第一个元素开始访问,知道所有元素被访问完成.迭代器只能往前访问,不能通过索引访问. 类型内部使用__iter__()方法转为迭代器,使用__nex ...

  9. Python开发——函数【装饰器、高阶函数、函数嵌套、闭包】

    装饰器 装饰器本质就是函数,为其他函数添加附加功能. 原则: 不修改被修饰函数的源代码 不修改被修饰函数的调用方法 装饰器知识储备:装饰器 = 高阶函数 + 函数嵌套 + 闭包 案例:求函数运行时间! ...

随机推荐

  1. 【ShardingSphere】ShardingSphere学习(三)-数据分片-分片

    分片键 分片算法 分片策略 SQL Hint 分片键 用于分片的数据库字段,是将数据库(表)水平拆分的关键字段.例:将订单表中的订单主键的尾数取模分片,则订单主键为分片字段. SQL中如果无分片字段, ...

  2. 从苏宁电器到卡巴斯基第13篇:我在苏宁电器当营业员 V

    强大的竞争对手 与现在遍地开花的苹果店相比,在2010年左右的时候,在长春,真正得到苹果授权的苹果店还是屈指可数的.当时在重庆路上如果想买苹果的产品,要么可以去苏宁国美,要么只能去卓展楼上的苹果专区了 ...

  3. adb、adb shell am、adb shell pm命令的详细使用说明

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/64183248 1.在命令行终端执行下面的命令: adb >adb.txt 2 ...

  4. Xposed学习二:实现机制

    在上一篇我们学习了如何在AS中创建Xposed模块,本篇来分析下官方教程中redClock的实现原理.本系列文章基于version-51 public void handleLoadPackage(X ...

  5. Service Started!!!-end In Service while

    将原先的win7换成了xp,用体验换来更好的兼容 问题如下: 在虚拟机器中运行了DebugView后,就一直重复出现Service Started!!!-end In Service while, 虽 ...

  6. Day001 基本的Dos命令

    基本的Dos命令 打开cmd的方式 开始+系统+命令提示符(有时候需要右键以管理员身份运行) Win+R键,输入cmd打开控制台 按住shift键的同时鼠标右键,点击在此处打开powershell窗口 ...

  7. Mac 解压缩软件-keka

    去官网 GitHub地址 功能预览

  8. Window内核学习之保护模式基础

    段寄存器 段寄存器有6个分别是 cs,ss,ds,es,fs,gs.这些段寄存器包含16位的可见部分和80位的隐藏部分,共90位. 16位的可见部分就是我们知道的cs等段寄存器的值,我们可以在od中查 ...

  9. mxgraph中mxStencil使用教程

    目录 标签嵌套关系 Shapes shape connections background foreground 其他样式 图形内部颜色绘制 封闭线段绘制 设置一条线的颜色大小 样例 官方文档:htt ...

  10. prometheus node-exporter增加新的自定义监控项

    项目中collector中新增加自己所需监控项即可 定义启动node-exporter是传入的参数 var ( phpEndPoint = kingpin.Flag("collector.p ...