P5110 块速递推

题意

多次询问,求数列

\[a_i=\begin{cases}233a_{i-1}+666a_{i-2} & i>1\\
0 & i=0\\
1 & i=1\\
\end{cases}
\]

的第 \(n\) 项在 \(\mod 1e9+7\) 意义下的值的异或和。

思路

首先这个数列是一个广义斐波那契数列。对于广义斐波那契数列,我们一般是用矩阵快速幂求的。

但是,这个题的询问次数是 \(5e7\) 。

所以我们就必须用 \(O(1)\) 的方法处理询问。于是,一个自诩光速幂的东西登场了。

实际上,光速幂就是在 \(\sqrt n\) 的时间复杂度内预处理,然后 \(O(1)\) 查询。具体来讲,我们可以预处理出转移矩阵的 \(1、2、\cdots、\sqrt n\) 和 \(1\sqrt n、2\sqrt n、\cdots、\sqrt n \sqrt n\)

显然就可以 \(O(1)\) 求这个东西了。

但是!询问的数字大小肯定不是在模域范围内的,所以我们需要找循环节。

有一个问题就是,矩阵的循环节并不固定

但是有一个结论,对角线元素互不相同的下三角矩阵的循环节为 \(\large\mathbf{\varphi_{mod}}\) 。但是笔者并不会证。

所以这题的正解并不是矩阵光速幂QAQ

我们可以用生成函数或者特征方程或者待定系数法来推出通项公式。具体推导过程与斐波那契数列的推导类似,然后用二次剩余将在根号下的项化成模域下的数,然后我们就得出了数列的通项公式:

\[a_n=233230706(94153035^n−905847205^n)\pmod{10^9}
\]

然而我用矩阵光速幂水过去了。

之后学了上面的东西之后可能会试着推一下。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define int unsigned
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int mod=1e9+7,ring=1e9+6,siz=31623;
struct mat{
int a[2][2];
mat(){memset(a,0,sizeof a);}
inline void set(){a[0][0]=a[1][1]=1;}
inline int* operator [] (const int x){return a[x];}
inline const int* operator [] (const int x) const {return a[x];}
inline mat operator * (const mat &b)const{
mat ans;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
(ans[i][j]+=1ll*a[i][k]*b[k][j]%mod)>=mod&&(ans[i][j]-=mod);
return ans;
}
}now,pow[siz+1],Pow[siz+1];
unsigned long long SA,SB,SC;
void init(){scanf("%llu%llu%llu",&SA,&SB,&SC);}
unsigned long long rand()
{
SA^=SA<<32,SA^=SA>>13,SA^=SA<<1;
unsigned long long t=SA;
SA=SB,SB=SC,SC^=t^SA;return SC;
}
inline void work(){
now[0][1]=0,now[0][0]=1,pow[1][0][0]=233,pow[1][1][0]=666,pow[1][0][1]=1;
pow[0].set();
Pow[0].set();
for(int i=2;i<=siz;i++)
pow[i]=pow[i-1]*pow[1];
Pow[1]=pow[siz];
for(int i=2;i<=siz;i++)
Pow[i]=Pow[i-1]*Pow[1];
int T=read();
init();
unsigned ans=0;
while(T--){
int zp=rand()%ring;
int x=zp/siz,y=zp%siz;
int res;
ans^=(res=(1ll*Pow[x][0][0]*pow[y][0][1]%mod+1ll*Pow[x][0][1]*pow[y][1][1]%mod))>=mod?res-=mod:res;
}
printf("%u\n",ans);
}
}
signed main(){
star::work();
return 0;
}

P5110 块速递推-光速幂、斐波那契数列通项的更多相关文章

  1. 递推-练习1--noi1760 菲波那契数列(2)

    递推-练习1--noi1760 菲波那契数列(2) 一.心得 二.题目 1760:菲波那契数列(2) 总时间限制:  1000ms 内存限制:  65536kB 描述 菲波那契数列是指这样的数列: 数 ...

  2. 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解

    题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...

  3. 洛谷 P5110 块速递推

    题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...

  4. [P1306] 斐波那契公约数 (矩阵快速幂+斐波那契数列)

    一开始数据没加强,一个简单的程序可以拿过 gcd(f[n],f[m])=f[gcd(n,m)] 下面这个是加强数据之后的80分代码 #include<bits/stdc++.h> usin ...

  5. 洛谷P5110 块速递推 [分块]

    传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...

  6. P5110 块速递推

    传送门 为啥我就没看出来有循环节呢-- 打表可得,这个数列是有循环节的,循环节为\(10^9+6\),然后分块预处理,即取\(k=sqrt(10^9+6)\),然后分别预处理出转移矩阵\(A\)的\( ...

  7. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  8. POJ3070 斐波那契数列递推 矩阵快速幂模板题

    题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...

  9. Luogu 1962 斐波那契数列(矩阵,递推)

    Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...

随机推荐

  1. P2365 任务安排

    题目描述 n 个任务排成一个序列在一台机器上等待完成(顺序不得改变),这 n 个任务被分成若干批,每批包含相邻的若干任务. 从零时刻开始,这些任务被分批加工,第 i 个任务单独完成所需的时间为 ti​ ...

  2. 性能分析之CPU分析-从CPU调用高到具体代码行(C/C++)

    今天在培训的过程中,也提到了分析要具体到代码的事情,如果思路方向是正确的,对java应用和C/C++应用来说,也是几个命令就可以跳到代码行了.前提是要能看得懂堆栈信息.所以一直以来我在讲课的过程中都有 ...

  3. ElGamal算法

    简介 ElGamal算法可以用于加密和签名,其安全性依赖于计算有限域上离散对数的难度. ElGamal密钥 生成密钥对时,首先选择素数p,两个随机数g和x,g和x都小于p,然后计算: y = g ^ ...

  4. Java IO学习笔记八:Netty入门

    作者:Grey 原文地址:Java IO学习笔记八:Netty入门 多路复用多线程方式还是有点麻烦,Netty帮我们做了封装,大大简化了编码的复杂度,接下来熟悉一下netty的基本使用. Netty+ ...

  5. 透彻详解(3)旁路电容100nF_0.1uF的由来计算

    原文地址点击这里: 前一节我们已经详细解释了旁路电容在数字电路系统中所起的基本且重要作用,即储能与为高频噪声电流提供低阻抗路径,尽管还并未给旁路电容的这些功能概括一个"高大上"的名 ...

  6. 基于C#的多边形冲突检测

    之前在项目上碰到了一个多边形冲突检测的问题,经百度.bing.google,发现目前已有的方案,要么是场景覆盖不全,要么是通过第三方类库实现(而这些第三方类库几乎是无法逆向反编译的),而项目中禁止使用 ...

  7. 23、ORA-00439:DEFERRED_SEGMENT_CREATION 问题解决

    23.1.说明: 1. 众所周知,在清空表内所有数据时,truncate比delete要快很多,原因是,delete语句每次删除一行,都在事务日志中为所删除的每行记录一项. truncate通过释放存 ...

  8. JS replace 替换全部数据

    (1)使用具有全局标志g的正则表达式 var str = "dogdogdog"; var str2 = str.replace(/dog/g,"cat");/ ...

  9. layui tabs选项卡 响应试不显示问题

    添加: var element = layui.element; //Tab的切换功能,切换事件监听等,需要依赖element模块 element.init();

  10. Spring:Spring嵌套事务方式

    Spring遇到嵌套事务时,怎么实现 实验时却遇到一个奇怪的问题: 1.当ServiceA.a()方法调用ServiceB.b()方法时,内层事务提交和回滚,都不受外层事务提交或回滚的影响. 2.当S ...