Codeforces 1442D - Sum(找性质+分治+背包)
智商掉线/ll
本来以为是个奇怪的反悔贪心,然后便一直往反悔贪心的方向想就没想出来,看了题解才发现是个 nb 结论题。
Conclusion. 在最优方案中,至多只有一个数组只有部分被选,其余数组要么全选要么全都不选。
证明:考虑调整。假设存在两个数组 \(x,y\) 分别选了前 \(p,q\) 个元素,这里不妨假设 \(a_{x,p+1}\ge a_{y,q+1}\),那么考虑从 \(y\) 数组中拎 \(l=\min(len_x-p,q)\) 个元素到 \(x\) 中,那么答案的增量
\]
由于 \(a_x,a_y\) 均为单调数组并且 \(a_{x,p+1}\ge a_{y,q+1}\),故 \(a_{x,p+i}\ge a_{y,q-i+1}\),因此 \(\Delta\ge 0\) 必然成立。如此调整下去即可得证。
有了这个性质之后如何求解答案呢?一个很自然的想法是对前后缀分别跑一遍背包,然后枚举那个选了一部分的数组及其选择的长度,然后用背包合并的技巧合并。但这样复杂度是三方的,如果将 \(n,k\) 视作同阶。一脸过不去的样子。考虑优化,注意到对于背包而言,其合并的复杂度可能很高,达到平方,但插入的复杂度并不算高,因此考虑分治,具体来说当分治一个区间时,我们记 \(mid=\lfloor\dfrac{l+r}{2}\rfloor\),然后将 \([l,mid]\) 中数组插入背包,分治 \([mid+1,r]\),然后将背包还原成原来的样子,插入 \([mid+1,r]\) 中的数组,分治 \([l,mid]\),再复原即可实现 \(nk\log n\) 的复杂度。
感觉我博客里有 114514191981019260817998244353 个“找性质”啊,为啥我这类找性质的题目还是做不出来呢?zibile,zabanna/dk
const int MAXN=3000;
int n,k,len[MAXN+5];
ll sum[MAXN+5],res=0;
vector<int> a[MAXN+5];
struct knap{
ll dp[MAXN+5];
void clear(){memset(dp,0,sizeof(dp));}
knap(){clear();}
void insert(int v,ll w){for(int i=k;i>=v;i--) chkmax(dp[i],dp[i-v]+w);}
};
knap cur;
void solve(int l,int r){
if(l==r){
ll s=0;
for(int i=0;i<=a[l].size();i++){
if(k>=i) chkmax(res,s+cur.dp[k-i]);
if(i!=a[l].size()) s+=a[l][i];
} return;
} int mid=l+r>>1;knap tmp=cur;
for(int i=l;i<=mid;i++) cur.insert(len[i],sum[i]);
solve(mid+1,r);cur=tmp;
for(int i=mid+1;i<=r;i++) cur.insert(len[i],sum[i]);
solve(l,mid);cur=tmp;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&len[i]);
for(int j=1,x;j<=len[i];j++){
scanf("%d",&x);sum[i]+=x;
a[i].pb(x);
}
} solve(1,n);
printf("%lld\n",res);
return 0;
}
Codeforces 1442D - Sum(找性质+分治+背包)的更多相关文章
- Codeforces 360A(找性质)
反思 写一写可以发现上限不断更新 一直在想怎么判断NO,刻板拘泥于错误的模型,想要像往常一样贪心地.读入当前值就能判断会不会NO,实际上只要构造完以后,最后把所有操作重新跑一遍看会不会冲突即可判断NO ...
- CodeChef Sum of distances(分治)
CodeChef Sum of distances(分治) 题目大意 有一排点,每个点 i 向 \(i + 1, i + 2, i + 3\) 分别连价值为 \(a_i,b_i,c_i\) 的有向边, ...
- Atcoder Grand Contest 008 E - Next or Nextnext(乱搞+找性质)
Atcoder 题面传送门 & 洛谷题面传送门 震惊,我竟然能独立切掉 AGC E 难度的思维题! hb:nb tea 一道 感觉此题就是找性质,找性质,再找性质( 首先看到排列有关的问题,我 ...
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- Codeforces 526G - Spiders Evil Plan(长链剖分+直径+找性质)
Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我 ...
- Codeforces 1188E - Problem from Red Panda(找性质+组合数学)
Codeforces 题面传送门 & 洛谷题面传送门 咦,题解搬运人竟是我? 一道很毒的计数题. 先转化下题意,每一次操作我们可以视作选择一种颜色并将其出现次数 \(+k\),之后将所有颜色的 ...
- Codeforces 698F - Coprime Permutation(找性质)
Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这个 D1F 比某道 jxd 作业里的 D1F 质量高多了啊,为啥这场的 D 进了 jxd 作业而这道题没进/yun 首先这 ...
- Codeforces 1067E - Random Forest Rank(找性质+树形 dp)
Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样 ...
- Codeforces 1225G - To Make 1(bitset+状压 dp+找性质)
Codeforces 题目传送门 & 洛谷题目传送门 还是做题做太少了啊--碰到这种题一点感觉都没有-- 首先我们来证明一件事情,那就是存在一种合并方式 \(\Leftrightarrow\) ...
随机推荐
- jsonp和cors解决跨域
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.对于JSON大家应该是很了解了吧,不是很清楚的朋友可以去json.org上了解下,简单易懂. 1.什么是跨 ...
- Bootstrap移动端导航(简易)
效果 在线查看 代码少,都在HTML里 <!DOCTYPE html> <html lang="en"> <head> <meta cha ...
- 初学Python-day10 函数2
函数 1.函数也是一种数据 函数也是一种数据,可以使用变量保存 回调函数(参数的值还是一个函数) 实例: def test(): print('hello world') def test1(a): ...
- 【c++ Prime 学习笔记】第10章 泛型算法
标准库未给容器添加大量功能,而是提供一组独立于容器的泛型算法 算法:它们实现了一些经典算法的公共接口 泛型:它们可用于不同类型的容器和不同类型的元素 利用这些算法可实现容器基本操作很难做到的事,例如查 ...
- CentOS系统优化一键配置脚本
#!/usr/bin/env bash PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:~/bin export P ...
- Spring Security Jwt Token 自动刷新
token的自动刷新 一.功能需求 二.功能分析 1.token 的生成 2.token 的自动延长 3.系统资源的保护 4.用户如何传递 token 三.实现思路 1.生成 token 和 refr ...
- linked-list-cycle-ii leetcode C++
Given a linked list, return the node where the cycle begins. If there is no cycle, returnnull. Follo ...
- 力扣 - 剑指 Offer 30. 包含min函数的栈
题目 剑指 Offer 30. 包含min函数的栈 思路1 使用一个辅助栈min_stack,用来维护栈的最小的元素 每次添加元素入栈时候,data_stack和min_stack都要同时维护 dat ...
- Java学习(十一)
今天学习了this和static关键字,这两个都是c++中学过的,但讲师还是讲了2个小时... 学得东西大部分都知道吧. this是当前对象的地址,类中带有static的方法不能使用this. 类中带 ...
- Redis入门和Java利用jedis操作redis
Redis入门和Java利用jedis操作redis Redis介绍 Redis 是完全开源的,遵守 BSD 协议,是一个高性能的 key-value 数据库. Redis 与其他 key - val ...