[atARC124F]Chance Meeting
为了方便,不妨先将$n$和$m$都减小1,其意义即为移动的次数
注意到老鼠向下移动和猫向上移动对于第2个条件是等价的,对于第1个条件即要求都恰好移动$n$次,那么对应的方案数即为${2n\choose n}$,乘上此系数后不妨将两种操作都看作仅有老鼠向下移动$2n$次
此时,即猫只能向右移动,因此相遇的位置必然在第$n+1$行
定义$f(x)$表示双方最终位于$(n+1,x+1)$且不存在一次操作后双方在同一个位置上的方案数,枚举双方相遇的位置,不难得到答案即为${2n\choose n}\sum_{i=0}^{m}f(i)f(m-i)$
先不考虑不在同一个位置上的条件,总方案数即为${n+2x\choose x}{n+x\choose n}$,将其记作$g(x)$,对于不合法的方案不妨去枚举其上一次相遇的位置,此时限制即之后不再相遇
具体的,可以看作在坐标系中从$(0,0)$走到$(n,0)$,每一步可以从$(x,y)$移动到$(x+1,y\pm 1)$,求除了起点和终点以外不与$x$轴有公共点的路径数
不难发现这即为$2H_{n-1}$(其中$H$为卡特兰数),也即有$f(x)=g(x)-2\sum_{i=0}^{x-1}H_{x-i-1}g(i)$
时间复杂度为$o(n+m\log m)$,可以通过


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 600005
4 #define L (1<<19)
5 #define mod 998244353
6 #define ll long long
7 int n,m,ans,fac[N],inv[N],rev[L],a[L],b[L],g[N],f[N];
8 int C(int n,int m){
9 return (ll)fac[n]*inv[m]%mod*inv[n-m]%mod;
10 }
11 int qpow(int n,int m){
12 int s=n,ans=1;
13 while (m){
14 if (m&1)ans=(ll)ans*s%mod;
15 s=(ll)s*s%mod;
16 m>>=1;
17 }
18 return ans;
19 }
20 void ntt(int *a,int p){
21 for(int i=0;i<L;i++)
22 if (i<rev[i])swap(a[i],a[rev[i]]);
23 for(int i=2;i<=L;i<<=1){
24 int s=qpow(3,(mod-1)/i);
25 if (p)s=qpow(s,mod-2);
26 for(int j=0;j<L;j+=i)
27 for(int k=0,ss=1;k<(i>>1);k++,ss=(ll)ss*s%mod){
28 int x=a[j+k],y=(ll)a[j+k+(i>>1)]*ss%mod;
29 a[j+k]=(x+y)%mod,a[j+k+(i>>1)]=(x-y+mod)%mod;
30 }
31 }
32 if (p){
33 int s=qpow(L,mod-2);
34 for(int i=0;i<L;i++)a[i]=(ll)a[i]*s%mod;
35 }
36 }
37 int main(){
38 scanf("%d%d",&n,&m);
39 n--,m--;
40 fac[0]=inv[0]=inv[1]=1;
41 for(int i=1;i<N;i++)fac[i]=(ll)fac[i-1]*i%mod;
42 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
43 for(int i=1;i<N;i++)inv[i]=(ll)inv[i-1]*inv[i]%mod;
44 for(int i=0;i<L;i++)rev[i]=(rev[i>>1]>>1)+((i&1)*(L>>1));
45 for(int i=0;i<=m;i++)a[i]=g[i]=(ll)C(n+(i<<1),i)*C(n+i,n)%mod;
46 for(int i=0;i<m;i++)b[i+1]=(ll)C((i<<1),i)*fac[i]%mod*inv[i+1]%mod;
47 ntt(a,0),ntt(b,0);
48 for(int i=0;i<L;i++)a[i]=(ll)a[i]*b[i]%mod;
49 ntt(a,1);
50 for(int i=0;i<=m;i++)f[i]=(g[i]-2*a[i]%mod+mod)%mod;
51 for(int i=0;i<=m;i++)ans=(ans+(ll)f[i]*f[m-i])%mod;
52 ans=(ll)ans*C((n<<1),n)%mod;
53 printf("%d\n",ans);
54 return 0;
55 }
[atARC124F]Chance Meeting的更多相关文章
- [LeetCode] Best Meeting Point 最佳开会地点
A group of two or more people wants to meet and minimize the total travel distance. You are given a ...
- [LeetCode] Meeting Rooms II 会议室之二
Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...
- [LeetCode] Meeting Rooms 会议室
Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...
- Scrum Meeting 20161205
本周Sprint Master 史少帅 一. 会议概要 作为一个新的sprint的开端,本次scrum meeting总结了每个人过去以来的工作,并明确了下一步的计划,具体如下: 工作总结: · 陈双 ...
- Beta阶段第十次Scrum Meeting
情况简述 BETA阶段第十次Scrum Meeting 敏捷开发起始时间 2017/1/4 00:00 敏捷开发终止时间 2017/1/5 00:00 会议基本内容摘要 deadline到来 参与讨论 ...
- Beta阶段第九次Scrum Meeting
情况简述 BETA阶段第九次Scrum Meeting 敏捷开发起始时间 2017/1/2 00:00 敏捷开发终止时间 2017/1/3 00:00 会议基本内容摘要 deadline临近 参与讨论 ...
- Beta阶段第八次Scrum Meeting
情况简述 BETA阶段第八次Scrum Meeting 敏捷开发起始时间 2016/12/21 00:00 敏捷开发终止时间 2016/12/22 00:00 会议基本内容摘要 deadline临近 ...
- Beta阶段第七次Scrum Meeting
Beta阶段第七次Scrum Meeting 情况简述 BETA阶段第七次Scrum Meeting 敏捷开发起始时间 2016/12/20 00:00 敏捷开发终止时间 2016/12/21 00: ...
- Beta阶段第六次Scrum Meeting
情况简述 BETA阶段第六次Scrum Meeting 敏捷开发起始时间 2016/12/16 00:00 敏捷开发终止时间 2016/12/17 00:00 会议基本内容摘要 平稳推进 参与讨论人员 ...
随机推荐
- MR 01 - MapReduce 计算框架入门
目录 1 - 什么是 MapReduce 2 - MapReduce 的设计思想 2.1 如何海量数据:分而治之 2.2 方便开发使用:隐藏系统层细节 2.3 构建抽象模型:Map 和 Reduce ...
- JavaFx 监听剪切板实现(Kotlin)
原文地址: JavaFx 监听剪切板实现(Kotlin) | Stars-One的杂货小窝 软件有个需求,想要实现监听剪切板的内容,若内容符合预期,则进行相关的操作,就可以免去用户手动粘贴的操作,提供 ...
- Blazor Webassembly多标签页开发
最近准备用Blazor Webassembly做后台开发要用到多标签页,找了半天发现绝大多数都是Blazor Server的多标签没有Webassembly.没办法只能自己想办法造轮子了. 查了许多资 ...
- 微服务+异步工作流+ Serverless,Netflix 决定弃用稳定运行 7 年的旧平台
作者 | Frank San Miguel 策划 | 田晓旭 2021 年,Netflix 会将大部分的工作负载从 Reloaded 转移到 Cosmos 平台.Cosmos 是一个计算平台,它将微服 ...
- vue.$set实现原理
上源码: export function set (target: Array<any> | Object, key: any, val: any): any { if (process. ...
- PyCharm永久破解方法,2021最新版本!!!
1,下载破解补丁(已更新到2021.1版本): 关注微信公众号<程序员的时光>,回复破解补丁即可: 下载补丁文件 jetbrains-agent.jar 和importat.txt文件并将 ...
- 【UE4 设计模式】命令模式 Command Pattern
概述 描述 将一个请求封装为一个对象,从而使我们可用不同的请求对客户进行参数化:对请求排队或者记录请求日志,以及支持可撤销的操作. 命令模式是一种对象行为型模式,其别名为动作(Action)模式或事务 ...
- [技术博客]使用pylint实现django项目的代码风格检查
使用pylint实现django项目的代码风格检查 前言 一个项目大多都是由一个团队来完成,如果没有统一的代码规范,那么每个人的代码的风格必定会有很大的差别.且不说会存在多个人同时开发同一模块的情 ...
- elasticsearch嵌套对象的映射
在es中,我们有时候可能需要映射,{ "field" : "xx" , "field01" : [] }这样格式的嵌套对象,默认情况下es会 ...
- mongodb的聚合操作
在mongodb中有时候我们需要对数据进行分析操作,比如一些统计操作,这个时候简单的查询操作(find)就搞不定这些需求,因此就需要使用 聚合框架(aggregation) 来完成.在mongodb ...