面试官:来了,老弟,LRU缓存实现一下?

我:直接LinkedHashMap就好了。

面试官:不要用现有的实现,自己实现一个。

我:.....

面试官:回去等消息吧....


大家好,我是程序员学长,今天我们来聊一聊LRU缓存问题。

Tips: LRU在计算机软件中无处不在,希望大家一定要了解透彻。

问题描述

设计LRU(最近最少使用)缓存结构,该结构在构造时确定大小,假设大小为K,并有如下两个功能
1. set(key, value):将记录(key, value)插入该结构
2. get(key):返回key对应的value值

分析问题

根据问题描述,我们可以知道LRU包含两种操作,即Set和Get操作。

对于Set操作来说,分为两种情况。

1. 缓存中已经存在。把缓存中的该元素移动到缓存头部。
2. 如果缓存中不存在。把该元素添加到缓存头部。如果此时缓存的大小超过限制的大小,需要删除缓存中末尾的元素。

对于Get操作来着,也分为两种情况。

  1. 缓存中存在。把缓存中的该元素移动到缓存头部。并返回对应的value值。
  2. 缓存中不存在。直接返回-1。

综上所述:对于一个LRU缓存结构来说,主要需要支持以下三种操作。

  1. 查找一个元素。
  2. 在缓存末尾删除一个元素。
  3. 在缓存头部添加一个元素。

所以,我们最容易想到的就是使用一个链表来实现LRU缓存。

我们可以维护一个有序的单链表,越靠近链表尾部的结点是越早访问的。

当我们进行Set操作时,我们从链表头开始顺序遍历。遍历的结果有两种情况。

  1. 如果此数据之前就已经被缓存在链表中,我们遍历得到这个数据对应的结点,然后将其从这个位置移动到链表的头部。
  2. 如果此数据不在链表中,又会分为两种情况。如果此时缓存链表没有满,我们直接将该结点插入链表头部。如果此时缓存链表已经满了,我们从链表尾部删除一个结点,然后将新的数据结点插入到链表头部。

当我们进行Get操作时,我们从链表头开始顺序遍历。遍历的结果有两种情况。

  1. 如果此数据之前就已经被缓存在链表中,我们遍历得到这个数据对应的结点,然后将其从这个位置移动到链表的头部。
  2. 如果此数据之前不在缓存中,我们直接返回-1。

下面我们来看一下代码如何实现。

class LinkedNode:
def __init__(self, key=0, value=0):
self.key = key
self.value = value
self.next = None class LRUCache():
def __init__(self, capacity: int):
# 使用伪头部节点
self.capacity=capacity
self.head = LinkedNode()
self.head.next=None
self.size = 0 def get(self, key: int) -> int: cur=self.head.next
pre=self.head while cur!=None:
if cur.key==key:
pre.next = cur.next
cur.next = self.head.next
self.head.next = cur
break
pre=pre.next
cur=cur.next if cur!=None:
return cur.value
else:
return -1 def put(self, key: int, value: int) -> None: cur = self.head.next
pre = self.head #缓存没有元素,直接添加
if cur==None:
node = LinkedNode()
node.key = key
node.value = value
self.head.next = node
self.size = self.size + 1
return #缓存有元素,判断是否存在于缓存中
while cur!=None:
#表示已经存在
if cur.key == key:
#把该元素反正链表头部
cur.value=value
pre.next = cur.next
cur.next = self.head.next
self.head.next = cur
break #代表当前元素时最后一个元素
if cur.next==None:
#如果此时缓存已经满了,淘汰最后一个元素
if self.size==self.capacity:
pre.next=None
self.size=self.size-1
node=LinkedNode()
node.key=key
node.value=value
node.next=self.head.next
self.head.next=node
self.size=self.size+1
break pre = pre.next
cur=cur.next

这样我们就用链表实现了一个LRU缓存,我们接下来分析一下缓存访问的时间复杂度。对于Set来说,不管缓存有没有满,我们都需要遍历一遍链表,所以时间复杂度是O(n)。对于Get操作来说,也是需要遍历一遍链表,所以时间复杂度也是O(n)。

优化

​ 从上面的分析,我们可以看到。如果用单链表来实现LRU,不论是Set还是Get操作,都需要遍历一遍链表,来查找当前元素是否在缓存中,时间复杂度为O(n),那我们可以优化吗?我们知道,使用hash表,我们查找元素的时间复杂度可以减低到O(1),如果我们可以用hash表,来替代上述的查找操作,那不就可以减低时间复杂度吗?根据这个逻辑,所以我们采用hash表和链表的组合方式来实现一个高效的LRU缓存。

class LinkedNode:
def __init__(self, key=0, value=0):
self.key = key
self.value = value
self.prev = None
self.next = None class LRUCache:
def __init__(self, capacity: int):
self.cache = dict()
self.head = LinkedNode()
self.tail = LinkedNode()
self.head.next = self.tail
self.tail.prev = self.head
self.capacity = capacity
self.size = 0 def get(self, key: int):
#如果key不存在,直接返回-1
if key not in self.cache:
return -1
#通过hash表定位位置,然后删除,省去遍历查找过程
node = self.cache[key]
self.moveHead(node)
return node.value def put(self, key: int, value: int) -> None:
if key not in self.cache:
# 如果key不存在,创建一个新的节点
node = LinkedNode(key, value)
# 添加进哈希表
self.cache[key] = node
self.addHead(node)
self.size += 1
if self.size > self.capacity:
# 如果超出容量,删除双向链表的尾部节点
removed = self.removeTail()
# 删除哈希表中对应的项
self.cache.pop(removed.key)
self.size -= 1
else:
node = self.cache[key]
node.value = value
self.moveHead(node) def addHead(self, node):
node.prev = self.head
node.next = self.head.next
self.head.next.prev = node
self.head.next = node def removeNode(self, node):
node.prev.next = node.next
node.next.prev = node.prev def moveHead(self, node):
self.removeNode(node)
self.addHead(node) def removeTail(self):
node = self.tail.prev
self.removeNode(node)
return node

总结

LRU缓存不论在工作中还是面试中,我们都会经常碰到。希望这篇文章能对你有所帮助。

今天,我们就聊到这里。更多有趣知识,请关注公众号【程序员学长】。我给你准备了上百本学习资料,包括python、java、数据结构和算法等。如果需要,请关注公众号【程序员学长】,回复【资料】,即可得。

你知道的越多,你的思维也就越开阔,我们下期再见。

手撕LRU缓存了解一下的更多相关文章

  1. 手撕LRU缓存

    面试官:来了,老弟,LRU缓存实现一下? 我:直接LinkedHashMap就好了. 面试官:不要用现有的实现,自己实现一个. 我:..... 面试官:回去等消息吧.... 大家好,我是程序员学长,今 ...

  2. 《吊打面试官》系列-Redis哨兵、持久化、主从、手撕LRU

    你知道的越多,你不知道的越多 点赞再看,养成习惯 前言 Redis在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在Redis的使用和原理方面对小伙伴们进行360°的刁难.作为一个在互联 ...

  3. HashMap+双向链表手写LRU缓存算法/页面置换算法

    import java.util.Hashtable; class DLinkedList { String key; //键 int value; //值 DLinkedList pre; //双向 ...

  4. Java:手写幼儿园级线程安全LRU缓存X探究影响命中率的因素

    最近遇到一个需求,需要频繁访问数据库,但是访问的内容只是 id + 名称 这样的简单键值对. 频繁的访问数据库,网络上和内存上都会给数据库服务器带来不小负担. 于是打算写一个简单的LRU缓存来缓存这样 ...

  5. Netty实现高性能IOT服务器(Groza)之手撕MQTT协议篇上

    前言 诞生及优势 MQTT由Andy Stanford-Clark(IBM)和Arlen Nipper(Eurotech,现为Cirrus Link)于1999年开发,用于监测穿越沙漠的石油管道.目标 ...

  6. 面试挂在了 LRU 缓存算法设计上

    好吧,有人可能觉得我标题党了,但我想告诉你们的是,前阵子面试确实挂在了 RLU 缓存算法的设计上了.当时做题的时候,自己想的太多了,感觉设计一个 LRU(Least recently used) 缓存 ...

  7. 阿里面试官让我实现一个线程安全并且可以设置过期时间的LRU缓存,我蒙了!

    目录 1. LRU 缓存介绍 2. ConcurrentLinkedQueue简单介绍 3. ReadWriteLock简单介绍 4.ScheduledExecutorService 简单介绍 5. ...

  8. LRU缓存实现(Java)

    LRU Cache的LinkedHashMap实现 LRU Cache的链表+HashMap实现 LinkedHashMap的FIFO实现 调用示例 LRU是Least Recently Used 的 ...

  9. 转: LRU缓存介绍与实现 (Java)

    引子: 我们平时总会有一个电话本记录所有朋友的电话,但是,如果有朋友经常联系,那些朋友的电话号码不用翻电话本我们也能记住,但是,如果长时间没有联系了,要再次联系那位朋友的时候,我们又不得不求助电话本, ...

随机推荐

  1. odoo里的javascript学习---自定义插件

    插件效果图 定义js odoo.define('auto_widget',function(require){ "use strict"//通过扩展AbstractField来扩展 ...

  2. Python自动化测试面试题-编程篇

    目录 Python自动化测试面试题-经验篇 Python自动化测试面试题-用例设计篇 Python自动化测试面试题-Linux篇 Python自动化测试面试题-MySQL篇 Python自动化测试面试 ...

  3. 第五十三篇 -- MFC美化界面2

    IDC_STATIC 1. 设置字体样式 方法1:在OnInitDialog()函数中使用以下语句 CFont * f; f = new CFont; f->CreateFont(50, // ...

  4. 第六篇--MFC美化界面

    1.MFC如何设置背景颜色 首先,为对话框添加WM_CTLCOLOR消息,方法为:右击Dialog窗口 --> Class Wizard --> Messages --> WM_CT ...

  5. OVERLAPPED 结构

    typedef struct _OVERLAPPED { ULONG_PTR Internal; ULONG_PTR InternalHigh; union { struct { DWORD Offs ...

  6. 数据库建模、面向对象建模>从零开始学java系列

    目录 数据库建模 前置知识 使用PowerDesigner数据库建模设计 一对多CDM概念数据模型设计 多对多的PDM物理数据模型设计(针对mysql) PowerDesigner将不同的模型进行转换 ...

  7. 洛谷P3067题解

    题面 首先,对于每个数,有三种状态:选入集合A,选入集合B,或者不选入集合.暴力枚举的时间复杂度是 \(O(n\times3^n)\) ,显然跑不过去. 因此考虑 \(\text{Meet in Mi ...

  8. Java注解如何对属性动态赋值

    学而不思则罔,思而不学则殆 前言 大家都用过Spring的@Value("xxx")注解,如果没有debug过源码的同学对这个操作还是一知半解,工作一年了学了反射学了注解,还是不会 ...

  9. "百度杯"CTF比赛 十月场——EXEC

    "百度杯"CTF比赛 十月场--EXEC 进入网站页面 查看源码 发现了vim,可能是vim泄露,于是在url地址输入了http://21b854b211034489a4ee1cb ...

  10. Compile Java Codes in Linux Shell instead of Ant Script

    The following is frequently used ant script, compile some java source codes with a libary path, then ...