「BalkanOI 2018 Day2」Parentrises

part1

显然可以直接贪心。

右括号记-1,左括号记1。

默认起始全部绿色,不染色。

策略如下:

  1. 从左往右扫,如果右括号个数大于左括号,那么去除目前未被染色的且在最前面的两个右括号(染成红,蓝色)。(如果没有无解)。

  2. 若此时恰好匹配,有解。

  3. 若此时左括号多出\(sum\)个,记录上一个括号完全匹配的地方,显然该位置往后是没有点被染色的。从右往左扫到该点,染色\(2*sum\)个点,如果到达某个点时候,左括号在染色后仍旧多于右括号,那么无解。

  4. 染完色输出即可。

part2

推论:一个括号串能够满足条件当且仅当所有前缀中右括号数量小于等于左括号×2,所有后缀中,左括号个数小于等于右括号数×2。

一段括号串的值为括号的和。

可以记录左括号×2-右括号数\(j\),而 后缀中右括号×2-左括号的最小值 = \(min(总括号值- 某前缀中左括号×2-右括号)\),相当于记录前缀中\(j\)的最大值\(k\)。

那么可以定义出\(dp\)状态\(dp[i][j][k]\),表示当前已经有\(i\)个括号,\(j,k\)如上。

之后转移时保证\(j \geq 0\),对于一个状态,如果它后缀中右括号×2-左括号的最小值 \(\geq 0\),那么计入答案。

转移直接枚举放左括号还是右括号。

复杂度\(o(n^3)\)。

当然由于n比较小,直接打表也行。

#include<bits/stdc++.h>
#define rep(q,a,b) for(int q=a,q##_end_=b;q<=q##_end_;++q)
#define dep(q,a,b) for(int q=a,q##_end_=b;q>=q##_end_;--q)
#define mem(a,b) memset(a,b,sizeof a )
#define debug(a) cerr<<#a<<' '<<a<<"___"<<endl
using namespace std;
void in(int &r){
static char c;
r=0;
while(c=getchar(),!isdigit(c));
do r=(r<<1)+(r<<3)+(c^48);
while(c=getchar(),isdigit(c));
}
int T;
namespace p_1{
const int mn=1e6+5;
char as[mn];
int sum[mn];
queue<int> had;
int cor[mn],tot[mn];
bool get(int len){
while(!had.empty())had.pop();
rep(q,1,len)cor[q]=0;
int last_zero=0;
rep(q,1,len){
int v=as[q]=='('?1:-1;
if(v==-1)had.push(q);
sum[q]=sum[q-1]+v;
if(sum[q]<0){
sum[q]=0;
if(had.size()<2){
return 0;
}
cor[had.front()]=1;
had.pop();
cor[had.front()]=2;
had.pop();
}
if(sum[q]==0)last_zero=q;
}
if(sum[len]>0){
tot[len+1]=0;
dep(q,len,last_zero+1)tot[q]=tot[q+1]+(as[q]==')');
int td=sum[len]<<1;
dep(q,len,last_zero+1)if(as[q]=='('){
if(td&1)cor[q]=1;
else cor[q]=2;
--td;
if((len-q+1-tot[q] +1)/2>tot[q])return 0;
if(!td)break;
}
return !td;
}
return 1;
}
void solve(){
in(T);
while(T--){
scanf("%s",as+1);
int len=strlen(as+1);
if(get(len)){
rep(q,1,len){
if(cor[q]==0)putchar('G');
else if(cor[q]==1)putchar('B');
else putchar('R');
}
putchar('\n');
}else puts("impossible");
}
}
}
namespace p_2{ int ans[305]={0,0,1,2,2,6,12,18,43,86,148,326,652,1194,2531,5062,9578,19884,39768,76680,157236,314472,613440,1248198,2496396,4906266,9932707,19865414,39237478,79165646,158331292,313801154,631634323,263268639,509707998,43257469,86514938,72895660,288290012,576580024,551498904,962513721,925027435,204521844,634307677,268615347,287719520,559111350,118222693,578936427,105459291,210918582,360752402,920849461,841698915,421349166,985137176,970274345,96196738,666703791,333407575,448451120,71192847,142385694,391328273,82210164,164420328,697441626,75399225,150798450,177655189,77725370,155450740,578770998,806452500,612904993,342317187,437431531,874863062,166780006,649351541,298703075,764861307,105948983,211897966,169754380,332500687,665001374,648783808,296688714,593377428,43060831,684124175,368248343,973819030,849070862,698141717,982308804,88186365,176372730,959772055,320975583,641951166,825442333,311190079,622380158,765671696,14446067,28892134,262223145,966556598,933113189,520941027,287565710,575131420,666019185,263936054,527872108,39283492,877846547,755693087,433079969,737806887,475613767,203965075,701508060,403016113,922600280,277710517,555421034,408729101,377397802,754795604,250532053,528340400,56680793,124734442,232656836,465313672,714603167,631625056,263250105,52648990,389536240,779072480,641256163,302398795,604797590,697370162,632833340,265666673,626109777,298187773,596375546,406717000,515830626,31661245,524137426,667633864,335267721,338047842,390892123,781784246,93415445,65330389,130660778,151215664,822766849,645533691,833650616,380489231,760978462,54775313,491923347,983846694,322809267,940997512,881995017,596258099,507985218,15970429,557503950,859869218,719738429,474482700,767988978,535977949,635491203,387005395,774010790,702061186,253594815,507189630,31838831,822372294,644744581,231777149,215914547,431829094,482869402,576014681,152029355,369499245,244741222,489482444,95772722,952809165,905618323,304323137,304632041,609264082,102336119,335070266,670140532,858231094,960619772,921239537,859847032,56893721,113787442,360033502,982628521,965257035,849451750,439416129,878832258,991939394,464496385,928992770,267785589,802816545,605633083,763528731,474974661,949949322,864267253,946087508,892175009,476000768,273171027,546342054,550581443,469352643,938705286,624000951,673806443,347612879,434823692,233016716,466033432,103642988,440059594,880119188,788176043,40656596,81313192,286602731,202636014,405272028,733717711,472596468,945192936,553096598,892385168,784770329,912447619,707646096,415292185,526477156,861291715,722583423,111861393,588150125,176300243,301383510,244253166,488506332,629844702,421869639,843739278,290375226,384946885,769893770,95673275,473895679,947791358,891751001,164209639,328419278,62075416,175112411,350224822,934621064,806088783,612177559,897003764,948394637,896789267,953901352,418921686,837843372};
int dp[2][305][605];
const int mod=1e9+7;
void add(int &a,int b){
a=(a+b)%mod;
}
void calc(){
int ed=300;
dp[0][0][0]=1;
bool ok=0;
rep(q,0,ed){
ok=!ok;
mem(dp[ok],0);
rep(l,0,q){
int r=q-l;
rep(w,0,2*q){
if(r*2-l -w>=0)add(ans[q],dp[!ok][l][w]); if(l*2-r-1>=0)add(dp[ok][l][max(w,(r+1)*2-l)],dp[!ok][l][w]);
add(dp[ok][l+1][max(w,r*2-l-1)],dp[!ok][l][w]);
}
}
}
}
void solve(){
in(T);
int n;
while(T--){
in(n);
printf("%d\n",ans[n]);
}
}
}
int main(){
freopen("parentrises.in","r",stdin);
freopen("parentrises.out","w",stdout);
int P;
in(P);
if(P==1)p_1::solve();
else p_2::solve();
return 0;
}

「BalkanOI 2018 Day2」Parentrises的更多相关文章

  1. 「BalkanOI 2018 Day1」Election

    「BalkanOI 2018 Day1」Election 记C为1,T为-1,\(sum[i]\)为\(i\)点的前缀和. 对于询问\([l,r]\),分两步计算答案. 要求所有点的\(sum[i]- ...

  2. 「BalkanOI 2018 Day1」Minmaxtree

    「BalkanOI 2018 Day1」Minmaxtree 每个点都有一个最大和最小权值的限制. 然后每一个权值的限制都必须要取到. 每个点显然可以直接让他取到最大或最小权值. 可以想到每个点匹配一 ...

  3. LOJ#2351. 「JOI 2018 Final」毒蛇越狱

    LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...

  4. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  5. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  6. 「雅礼集训 2018 Day2」农民

    传送门 Description  「搞 OI 不如种田.」 小 D 在家种了一棵二叉树,第 ii 个结点的权值为 \(a_i\). 小 D 为自己种的树买了肥料,每天给树施肥. 可是几天后,小 D 却 ...

  7. LOJ6500. 「雅礼集训 2018 Day2」操作(哈希+差分)

    题目链接 https://loj.ac/problem/6500 题解 区间取反 \(01\) 串的经典套路是差分.我们令 \(b_i = a_i\ {\rm xor}\ a_{i - 1}\)(\( ...

  8. 【卡常 bitset 分块】loj#6499. 「雅礼集训 2018 Day2」颜色

    好不容易算着块大小,裸的分块才能过随机极限数据:然而这题在线的数据都竟然是构造的…… 题目描述 有 $n$ 个数字,第 $i$ 个数字为 $a_i$. 有 $m$ 次询问,每次给出 $k_i$ 个区间 ...

  9. #6499. 「雅礼集训 2018 Day2」颜色 [分块,倍增,bitset]

    bitset压位,因为是颜色数,直接倍增,重合部分不管,没了. // powered by c++11 // by Isaunoya #include <bits/stdc++.h> #d ...

随机推荐

  1. PAT甲组 1010 Radix (二分)

    1010 Radix (25分) Given a pair of positive integers, for example, \(6\) and \(110\), can this equatio ...

  2. 防止 jar 包被反编译

    1.隔离Java程序 最简单的方法就是让用户不能够访问到Java Class程序,这种方法是最根本的方法,具体实现有多种方式.例如,开发人员可以将关键的Java Class放在服务器端,客户端通过访问 ...

  3. Chapter 12 IP Weighting and Marginal Structural Model

    目录 12.1 The causal question 12.2 Estimating IP weights via modeling 12.3 Stabilized IP weights 12.4 ...

  4. Java初学者作业——编写Java程序,在控制台中输入一个数字,要求定义方法实现找出能够整除该数字的所有数字。

    返回本章节 返回作业目录 需求说明: 编写Java程序,在控制台中输入一个数字,要求定义方法实现找出能够整除该数字的所有数字. 实现思路: 定义方法findNums(),用于实现查找所有能够整除指定数 ...

  5. vim 个性化设置

    vim 编辑器安装 yum install vim vim个性化设置 vim ~/.vimrc 复制以下代码 关闭vim一致性原则 set nocompatible 显示行号 set number 设 ...

  6. 《手把手教你》系列技巧篇(五十五)-java+ selenium自动化测试-上传文件-下篇(详细教程)

    1.简介 在实际工作中,我们进行web自动化的时候,文件上传是很常见的操作,例如上传用户头像,上传身份证信息等.所以宏哥打算按上传文件的分类对其进行一下讲解和分享. 2.为什么selenium没有提供 ...

  7. 通过脚本升级PowerShell

    Update Powershell through command line https://superuser.com/questions/1287032/update-powershell-thr ...

  8. 教你三步在CentOS 7 中安装或升级最新的内核

    转载自:https://www.linuxprobe.com/update-kernel-centos7.html #步骤 1:检查已安装的内核版本 >uname -sr #步骤 2:在 Cen ...

  9. win 10 遇到某文件一直在占用导致无法关闭,或者去任务管理器找不到服务怎么办?具体解决

    1. 打开 cmd 指令框 ,输入 perfmon 回车 就会出来这个 点击  打开资源监视器, 在句柄搜索框搜索 那个占用资源的文件或软件关键词 ,如下 搜索酷狗 将有关的选项,右键选中后 打开菜单 ...

  10. PPT2010初识

    原文链接:https://www.toutiao.com/i6486689592241029645/ 一.认识PPT PPT是PowerPoint简称,主要用于演示文稿的创建,即幻灯片的制作演示软件. ...