Ma X, Li B, Wang Y, et al. Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality[J]. arXiv: Learning, 2018.

@article{ma2018characterizing,

title={Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality},

author={Ma, Xingjun and Li, Bo and Wang, Yisen and Erfani, Sarah M and Wijewickrema, Sudanthi and Houle, Michael E and Schoenebeck, Grant and Song, Dawn and Bailey, James},

journal={arXiv: Learning},

year={2018}}

本文介绍了一种local intrinsic dimensionality(LID)的指标用以揭示普通样本和对抗样本的本质区别, 这个指标可以用用来进行防御(即在样本进来的时候, 提前预判其是否是对抗样本).

主要内容

已有的一些用来区分普通样本和对抗样本的方法, 诸如KD(核密度估计) 和 BU(贝叶斯不确定度, 这个不是很了解), 但是其效果不明显, 本文提出的LID指标能够在各方面胜过他们.

比如在下图中, KM(k均值距离: 取样本\(x\)到最近的k个样本的距离的平均), 以及核密度估计(KD), 在普通样本和对抗样本上的指标是一致的, 此时无法判断, 而本文的LID的方法却能够判断(LID越大越偏离普通样本).

LID

由一个点为中心, 向外以超距体的方式发散, 其体积\(V\)与边长\(r\)的关系可知

\[\frac{V_2}{V_1} = (\frac{r_2}{r_1})^m \rightarrow m= \frac{\log (V_2/V_1)}{ \log (r_2 / r_1)},
\]

其中\(m\)为维度.

于是有人就想出把这种思想推广到一般的数据(数据的分布可能是一个低维的流形)

定义(LID): 给定样本\(x \in \mathcal{X}\), 令\(R >0\)表示\(x\)到其它样本的距离的随机变量, 并用\(F(r)\)表示概率\(P(R\le r)\), 且假设其关于\(r>0\)连续可微, 则在\(x\)点的距离为\(r\)的LID定义为

\[\tag{2}
\mathrm{LID}_F(r) := \lim_{\epsilon \rightarrow 0} \frac{\log (F((1+\epsilon)\cdot r) / F(r))}{\log (1+\epsilon)}=\frac{r\cdot F'(r)}{F(r)},
\]

若极限存在.

注: 最后一个等式成立, 只需中间式子上下同除以\(\epsilon\)再分别取极限即可(既然二者的极限都存在).

最后,

\[\tag{3}
\mathrm{LID}_F := \lim_{r \rightarrow 0} \mathrm{LID}_F(r).
\]

此即位我们最后要的LID(\(r \rightarrow 0\)是因为我们关注的是局部信息).

LID估计

\[\tag{4}
\widehat{\mathrm{LID}}(x)= - (\frac{1}{k} \sum_{i=1}^k \log \frac{r_i(x)}{r_k(x)})^{-1}.
\]

算法

作者为了利用LID区分对抗样本, 训练了一个分类器. 在预先训练好的网络\(H\)上, 对每一个样本, 第i层的输出为\(H^i(x)\), 对每一层的输出, 我们都计算其LID(这一步会用到别的训练数据)并保存下来. 利用这些提取出来的特征(LID), 训练二分类器(作者采用逻辑斯蒂回归).

实验

1

作者首先分析了, 普通样本(normal), 噪声样本(noisy), 对抗样本(adv)的LID指标, 可以发现,LID对对抗样本很敏感, 下面右图分析了在不同层中提取出来的LID值用于区分对抗样本的成功率.

2

比较了不同方法 KD, BU, KD+BU, LID在不同数据下, 对利用不同攻击方法生成的对抗样本进行区分的效果(途中的指标为AUC, AUC指标越大越好)

3

作者在FGM上计算LID并训练分类器, 再用别的方法生成对抗样本, 再测试效果.

4

作者为了探究每一个batch的大小, 以及超参数\(k\)的影响, 做了实验, 显然batch size大一点比较好.

5

作者最小化下式生成对抗样本,

结果这些样本不能够欺骗过LID.

注: 已经别的文章指出, 其成功的原因在于破坏了梯度, 更改一下损失函数就能攻破.

CHARACTERIZING ADVERSARIAL SUBSPACES USING LOCAL INTRINSIC DIMENSIONALITY的更多相关文章

  1. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  2. KDD2015,Accepted Papers

    Accepted Papers by Session Research Session RT01: Social and Graphs 1Tuesday 10:20 am–12:00 pm | Lev ...

  3. 壁虎书8 Dimensionality Reduction

    many Machine Learning problems involve thousands or even millions of features for each training inst ...

  4. 降维工具箱drtool

    工具箱下载:http://leelab.googlecode.com/svn/trunk/apps/drtoolbox/ ——————————————————————————————————————— ...

  5. matlab 降维工具 转载【https://blog.csdn.net/tarim/article/details/51253536】

    降维工具箱drtool   这个工具箱的主页如下,现在的最新版本是2013.3.21更新,版本v0.8.1b http://homepage.tudelft.nl/19j49/Matlab_Toolb ...

  6. t-SNE完整笔记

    http://www.datakit.cn/blog/2017/02/05/t_sne_full.html t-SNE(t-distributed stochastic neighbor embedd ...

  7. Context Encoder论文及代码解读

    经过秋招和毕业论文的折磨,提交完论文終稿的那一刻总算觉得有多余的时间来搞自己的事情. 研究论文做的是图像修复相关,这里对基于深度学习的图像修复方面的论文和代码进行整理,也算是研究生方向有一个比较好的结 ...

  8. 100 Most Popular Machine Learning Video Talks

    100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45,  Gaussian Process Basics, David ...

  9. 理解 t-SNE (Python)

    t-SNE(t-distribution Stochastic Neighbor Embedding)是目前最为流行的高维数据的降维算法. t-SNE 成立的前提基于这样的一个假设:我们现实世界观察到 ...

随机推荐

  1. adjective

    形容词用来描述名词或代词:副词用来描述剩下的(动词.形容词.副词和整句).adverb: to word. Adjectives are used almost exclusively to modi ...

  2. 大数据学习day25------spark08-----1. 读取数据库的形式创建DataFrame 2. Parquet格式的数据源 3. Orc格式的数据源 4.spark_sql整合hive 5.在IDEA中编写spark程序(用来操作hive) 6. SQL风格和DSL风格以及RDD的形式计算连续登陆三天的用户

    1. 读取数据库的形式创建DataFrame DataFrameFromJDBC object DataFrameFromJDBC { def main(args: Array[String]): U ...

  3. Netty实现Socket

    Netty实现Socket 从Java1.4开始, Java引入了non-blocking IO,简称NIO.NIO与传统socket最大的不同就是引入了Channel和多路复用selector的概念 ...

  4. APP调用系统相册,使用3DTouch重压,崩溃

    崩溃:app调用系统相册,使用3DTouch重压,崩溃 问题描述 app调用系统相册,使用3DTouch重压,一般的app都会崩溃. 解决方法 写个分类即可 @implementation UICol ...

  5. SSO(单点登录)示例

    此文为转载文章,出处:https://www.cnblogs.com/jpfss/p/9273680.html SSO在我们的应用中非常常见,例如我们在OA系统登录了,我们就可以直接进入采购系统,不需 ...

  6. springMVC中@requestMapper的使用和注意事项

    package com.hope.controller;import org.springframework.stereotype.Controller;import org.springframew ...

  7. 【科研】科研【合同】盖章流程/横向·非涉密/电子科技大学

    [前置手续] 一.在科研管理系统里填单子,立项. 二.科研管理系统审核通过后,对于对面给好的合同,在合同系统里选择[合同业务发起-发起非标准合同],填单子. 三.会有一系列的审核,审核完成后打印合同备 ...

  8. 『学了就忘』Linux服务管理 — 76、RPM包安装的服务管理

    目录 1.独立服务的启动管理 2.独立服务的自启动管理 方式一: 方式二:(推荐) 方式三: 3.验证 1.独立服务的启动管理 (1)使用/etc/init.d/目录中的启动脚本启动服务(推荐) [r ...

  9. Nginx支持php

    目录 一.简介 二.配置 三.测试 四.参数 一.简介 Nginx本身只能解析html文件,但有些网页是php写的,就需要Nginx连接php,将网页解析成html再发给客户端. 配置中将.php 结 ...

  10. 严重危害警告!Log4j 执行漏洞被公开!

    12 月 10 日凌晨,Apache 开源项目 Log4j2 的远程代码执行漏洞细节被公开,漏洞威胁等级为:严重. Log4j2 是一个基于 Java 的日志记录工具.它重写了 Log4j 框架,引入 ...