UVA 297 Quadtrees(四叉树建树、合并与遍历)
<span style="font-size: 18pt; font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">K - </span><span style="color: blue; font-size: 18pt; font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">Quadtrees</span>
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld
& %llu
System Crawler (2014-01-02)
Description
| Quadtrees |
A quadtree is a representation format used to encode images. The fundamental idea behind the quadtree is that any image can be split into four quadrants. Each quadrant may again be split in four sub quadrants,
etc. In the quadtree, the image is represented by a parent node, while the four quadrants are represented by four child nodes, in a predetermined order.
Of course, if the whole image is a single color, it can be represented by a quadtree consisting of a single node. In general, a quadrant needs only to be subdivided if it consists of pixels of different colors.
As a result, the quadtree need not be of uniform depth.
A modern computer artist works with black-and-white images of
units, for a total
of 1024 pixels per image. One of the operations he performs is adding two images together, to form a new image. In the resulting image a pixel is black if it was black in at least one of the component images, otherwise it is white.
This particular artist believes in what he calls the preferred fullness: for an image to be interesting (i.e. to sell for big bucks) the most important property is the number of filled (black) pixels
in the image. So, before adding two images together, he would like to know how many pixels will be black in the resulting image. Your job is to write a program that, given the quadtree representation of two images, calculates the number of pixels that are
black in the image, which is the result of adding the two images together.
In the figure, the first example is shown (from top to bottom) as image, quadtree, pre-order string (defined below) and number of pixels. The quadrant numbering is shown at the top of the figure.

Input Specification
The first line of input specifies the number of test cases (N) your program has to process.
The input for each test case is two strings, each string on its own line. The string is the pre-order representation of a quadtree, in which the letter 'p' indicates a parent node, the letter 'f'
(full) a black quadrant and the letter 'e' (empty) a white quadrant. It is guaranteed that each string represents a valid quadtree, while the depth of the tree is not more than 5 (because each pixel has only one color).
Output Specification
For each test case, print on one line the text 'There are X black pixels.', where X is the number of black pixels in the resulting image.
Example Input
3
ppeeefpffeefe
pefepeefe
peeef
peefe
peeef
peepefefe
Example Output
There are 640 black pixels.
There are 512 black pixels.
There are 384 black pixels.
题意:有一个用四叉树表示的图,该图用P,E,F来表示,P表示父节点,F表示黑色,E表示白色,整个图的大小为1024。每个子图都能分成四个部分(当颜色不同的时候才须要划分),如今要把两个图合并成一个图,求合并后图有多少黑色像素。
#include<stdio.h>
#include<cstring>
#include<algorithm>
int T;
char s1[2049],s2[2049];
struct quadtree
{
int num;
quadtree *next[4];
quadtree()
{
num=0;
for(int i=0; i<4; i++)next[i]=0;
}
};
quadtree *build(char *s)///建树
{
quadtree *now=new quadtree;
int len=strlen(s);
if(s[0]!='p')
{
now->num=1;
if(s[0]!='f')
{
delete now;
now=NULL;
}
return now;
}
int up=4;///子树数目
int d=1;
for(int i=1; d<=up&&i<len; i++)
{
if(s[i]=='p')
{
now->next[d-1]=build(s+i);
int dx=0,dy=4;
while(dx<dy)
{
dx++;
if(s[i+dx]=='p')dy+=4;
}
i+=dx;///i变到下一颗子树的起始位置
}
else
{
now->next[d-1]=build(s+i);
}
d++;
}
return now;
}
quadtree *merge_(quadtree *p,quadtree *q)///合并
{
if(p||q)
{
quadtree *root=new quadtree;
if(p&&q)for(int i=0; i<4; i++)
{
if(p->num||q->num)
{
root->num=1; ///子树已经全为黑色,不须要继续递归
continue;
}
root->next[i]=merge_(p->next[i],q->next[i]);
}
else if(p==NULL&&q)for(int i=0; i<4; i++)
{
if(q->num)
{
root->num=1;; ///子树已经全为黑色,不须要继续递归
continue;
}
root->next[i]=merge_(NULL,q->next[i]);
}
else for(int i=0; i<4; i++)
{
if(p->num)
{
root->num=1;; ///子树已经全为黑色,不须要继续递归
continue;
}
root->next[i]=merge_(p->next[i],NULL);
}
return root;
}
return NULL;
}
int dfs(quadtree *p,int num)
{
if(p==NULL)return 0;
int sum=0;
if(p->num)sum+=num;
for(int i=0; i<4; i++)
{
sum+=dfs(p->next[i],num/4);
}
return sum;
}
int main()
{
//freopen("in.txt","r",stdin);
quadtree *root1,*root2,*root;
scanf("%d",&T);
while(T--)
{
scanf("%s%s",s1,s2);
root=root1=root2=NULL;
root1=build(s1);
root2=build(s2);
root=merge_(root1,root2);
printf("There are %d black pixels.\n",dfs(root,1024));
}
return 0;
}
UVA 297 Quadtrees(四叉树建树、合并与遍历)的更多相关文章
- UVA.297 Quadtrees (四分树 DFS)
UVA.297 Quadtrees (四分树 DFS) 题意分析 将一个正方形像素分成4个小的正方形,接着根据字符序列来判断是否继续分成小的正方形表示像素块.字符表示规则是: p表示这个像素块继续分解 ...
- UVa 297 Quadtrees(树的递归)
Quadtrees 四分树就是一颗一个结点只有4个儿子或者没有儿子的树 [题目链接]UVa 297 Quadtrees [题目类型]树的递归 &题意: 一个图片,像素是32*32,给你两个先序 ...
- uva 11234 Expressions 表达式 建树+BFS层次遍历
题目给出一个后缀表达式,让你求从下往上的层次遍历. 思路:结构体建树,然后用数组进行BFS进行层次遍历,最后把数组倒着输出就行了. uva过了,poj老是超时,郁闷. 代码: #include < ...
- UVA - 297 Quadtrees (四分树)
题意:求两棵四分树合并之后黑色像素的个数. 分析:边建树边统计. #include<cstdio> #include<cstring> #include<cstdlib& ...
- UVa 297 - Quadtrees
题目:利用四叉树处理图片,给你两张黑白图片的四叉树,问两张图片叠加后黑色的面积. 分析:搜索.数据结构.把图片分成1024块1*1的小正方形,建立一位数组记录对应小正方形的颜色. 利用递归根据字符串, ...
- uva 297 quadtrees——yhx
Quadtrees A quadtree is a representation format used to encode images. The fundamental idea behind ...
- UVa 297 Quadtrees -SilverN
A quadtree is a representation format used to encode images. The fundamental idea behind the quadtre ...
- 【紫书】Quadtrees UVA - 297 四叉树涂色
题意:前序遍历给出两个像素方块.求两个方块叠加后有几个黑色格子. 题解:每次读进来一个方块,就在二维数组上涂色.每次把白色涂黑就cnt++: 具体递归方法是以右上角坐标与边长为参数,每次通过几何规律往 ...
- Quadtrees UVA - 297
题目链接:https://vjudge.net/problem/UVA-297 题目大意:如上图所示,可以用一个四分树来表示一个黑白图像,方法是用根节点表示整副图像,然后把行列各等分两等分,按照图中的 ...
随机推荐
- ajax error函数
老是去百度 还是自己记下来吧 $.ajax({ url: '/AJAX请求的URL', success: function (data) { alert(data); }, error: functi ...
- C#中的委托事件的分析
推荐:http://www.cnblogs.com/SkySoot/archive/2012/04/05/2433639.html 委托和事件在 .NET Framework 中的应用非常广泛,然而, ...
- linux线程(一)基本应用
有感而发(可以直接忽略~):每次要用到线程,都要在网上重新学下基础,例子倒是不少:一种是排版好,讲的不全又不是自己想要的:一种是排版不好,直接略过了.两者兼有的又要苦苦寻找,所以还是自己总结了,觉得每 ...
- 理解和熟练运用js中的call及apply
call 和 apply 都是为了改变某个函数运行时的 context 即上下文而存在的,换句话说,就是为了改变函数体内部 this 的指向. 因为 JavaScript 的函数存在「定义时上下文」和 ...
- 蓝牙音箱bose soundlink mini2链接mac后itunes自动启动的问题解决
1.在应用程序列表中复制一个应用重命名为DoNothingApp.app(非系统应用才可以成功复制) 2.打开terminal执行该命令(执行后需要输入密码),注意mv和iTunes.app后分别有一 ...
- Python连接Redis连接配置
1. 测试连接: Python 2.7.8 (default, Oct 20 2014, 15:05:19) [GCC 4.9.1] on linux2 Type "help", ...
- 【转载】JavaEE权限管理分析
JavaEE权限管理分析 一.背景 在 Web 应用开发中,安全一直是非常重要的一个方面.安全虽然属于应用的非功能性需求,但是应该在应用开发的初期就考虑进来.如果在应用开发的后期才考虑安全的问题,就可 ...
- 【Uvalive 5834】 Genghis Khan the Conqueror (生成树,最优替代边)
[题意] 一个N个点的无向图,先生成一棵最小生成树,然后给你Q次询问,每次询问都是x,y,z的形式, 表示的意思是在原图中将x,y之间的边增大(一定是变大的)到z时,此时最小生成数的值是多少.最后求Q ...
- [置顶] linux内核启动1-启动参数(启动参数的获取和处理,分析setup_arch)
最近公司要求调试一个内核,启动时有问题,所以就花了一点时间看看内核启动. 看的过程中总结了一点东西,希望可以帮助大家调试内核. 当我开始看的时候,第一件事是从网上搜集资料,不看不知道,一看吓一跳!牛人 ...
- 一张图看懂开源许可协议,开源许可证GPL、BSD、MIT、Mozilla、Apache和LGPL的区别
一张图看懂开源许可协议,开源许可证GPL.BSD.MIT.Mozilla.Apache和LGPL的区别 首先借用有心人士的一张相当直观清晰的图来划分各种协议:开源许可证GPL.BSD.MIT.Mozi ...