<span style="font-size: 18pt; font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">K - </span><span style="color: blue; font-size: 18pt; font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">Quadtrees</span>

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld
& %llu

Appoint description: 
System Crawler  (2014-01-02)

Description

 Quadtrees 

A quadtree is a representation format used to encode images. The fundamental idea behind the quadtree is that any image can be split into four quadrants. Each quadrant may again be split in four sub quadrants,
etc. In the quadtree, the image is represented by a parent node, while the four quadrants are represented by four child nodes, in a predetermined order.

Of course, if the whole image is a single color, it can be represented by a quadtree consisting of a single node. In general, a quadrant needs only to be subdivided if it consists of pixels of different colors.
As a result, the quadtree need not be of uniform depth.

A modern computer artist works with black-and-white images of  units, for a total
of 1024 pixels per image. One of the operations he performs is adding two images together, to form a new image. In the resulting image a pixel is black if it was black in at least one of the component images, otherwise it is white.

This particular artist believes in what he calls the preferred fullness: for an image to be interesting (i.e. to sell for big bucks) the most important property is the number of filled (black) pixels
in the image. So, before adding two images together, he would like to know how many pixels will be black in the resulting image. Your job is to write a program that, given the quadtree representation of two images, calculates the number of pixels that are
black in the image, which is the result of adding the two images together.

In the figure, the first example is shown (from top to bottom) as image, quadtree, pre-order string (defined below) and number of pixels. The quadrant numbering is shown at the top of the figure.

Input Specification

The first line of input specifies the number of test cases (N) your program has to process.

The input for each test case is two strings, each string on its own line. The string is the pre-order representation of a quadtree, in which the letter 'p' indicates a parent node, the letter 'f'
(full) a black quadrant and the letter 'e' (empty) a white quadrant. It is guaranteed that each string represents a valid quadtree, while the depth of the tree is not more than 5 (because each pixel has only one color).

Output Specification

For each test case, print on one line the text 'There are X black pixels.', where X is the number of black pixels in the resulting image.

Example Input

3
ppeeefpffeefe
pefepeefe
peeef
peefe
peeef
peepefefe

Example Output

There are 640 black pixels.
There are 512 black pixels.
There are 384 black pixels.

题意:有一个用四叉树表示的图,该图用P,E,F来表示,P表示父节点,F表示黑色,E表示白色,整个图的大小为1024。每个子图都能分成四个部分(当颜色不同的时候才须要划分),如今要把两个图合并成一个图,求合并后图有多少黑色像素。

#include<stdio.h>
#include<cstring>
#include<algorithm>
int T;
char s1[2049],s2[2049];
struct quadtree
{
int num;
quadtree *next[4];
quadtree()
{
num=0;
for(int i=0; i<4; i++)next[i]=0;
}
};
quadtree *build(char *s)///建树
{
quadtree *now=new quadtree;
int len=strlen(s);
if(s[0]!='p')
{
now->num=1;
if(s[0]!='f')
{
delete now;
now=NULL;
}
return now;
}
int up=4;///子树数目
int d=1;
for(int i=1; d<=up&&i<len; i++)
{
if(s[i]=='p')
{
now->next[d-1]=build(s+i);
int dx=0,dy=4;
while(dx<dy)
{
dx++;
if(s[i+dx]=='p')dy+=4;
}
i+=dx;///i变到下一颗子树的起始位置
}
else
{
now->next[d-1]=build(s+i);
}
d++;
}
return now;
}
quadtree *merge_(quadtree *p,quadtree *q)///合并
{
if(p||q)
{
quadtree *root=new quadtree;
if(p&&q)for(int i=0; i<4; i++)
{
if(p->num||q->num)
{
root->num=1; ///子树已经全为黑色,不须要继续递归
continue;
}
root->next[i]=merge_(p->next[i],q->next[i]);
}
else if(p==NULL&&q)for(int i=0; i<4; i++)
{
if(q->num)
{
root->num=1;; ///子树已经全为黑色,不须要继续递归
continue;
}
root->next[i]=merge_(NULL,q->next[i]);
}
else for(int i=0; i<4; i++)
{
if(p->num)
{
root->num=1;; ///子树已经全为黑色,不须要继续递归
continue;
}
root->next[i]=merge_(p->next[i],NULL);
}
return root;
}
return NULL;
}
int dfs(quadtree *p,int num)
{
if(p==NULL)return 0;
int sum=0;
if(p->num)sum+=num;
for(int i=0; i<4; i++)
{
sum+=dfs(p->next[i],num/4);
}
return sum;
}
int main()
{
//freopen("in.txt","r",stdin);
quadtree *root1,*root2,*root;
scanf("%d",&T);
while(T--)
{
scanf("%s%s",s1,s2);
root=root1=root2=NULL;
root1=build(s1);
root2=build(s2);
root=merge_(root1,root2);
printf("There are %d black pixels.\n",dfs(root,1024));
}
return 0;
}

UVA 297 Quadtrees(四叉树建树、合并与遍历)的更多相关文章

  1. UVA.297 Quadtrees (四分树 DFS)

    UVA.297 Quadtrees (四分树 DFS) 题意分析 将一个正方形像素分成4个小的正方形,接着根据字符序列来判断是否继续分成小的正方形表示像素块.字符表示规则是: p表示这个像素块继续分解 ...

  2. UVa 297 Quadtrees(树的递归)

    Quadtrees 四分树就是一颗一个结点只有4个儿子或者没有儿子的树 [题目链接]UVa 297 Quadtrees [题目类型]树的递归 &题意: 一个图片,像素是32*32,给你两个先序 ...

  3. uva 11234 Expressions 表达式 建树+BFS层次遍历

    题目给出一个后缀表达式,让你求从下往上的层次遍历. 思路:结构体建树,然后用数组进行BFS进行层次遍历,最后把数组倒着输出就行了. uva过了,poj老是超时,郁闷. 代码: #include < ...

  4. UVA - 297 Quadtrees (四分树)

    题意:求两棵四分树合并之后黑色像素的个数. 分析:边建树边统计. #include<cstdio> #include<cstring> #include<cstdlib& ...

  5. UVa 297 - Quadtrees

    题目:利用四叉树处理图片,给你两张黑白图片的四叉树,问两张图片叠加后黑色的面积. 分析:搜索.数据结构.把图片分成1024块1*1的小正方形,建立一位数组记录对应小正方形的颜色. 利用递归根据字符串, ...

  6. uva 297 quadtrees——yhx

    Quadtrees  A quadtree is a representation format used to encode images. The fundamental idea behind ...

  7. UVa 297 Quadtrees -SilverN

    A quadtree is a representation format used to encode images. The fundamental idea behind the quadtre ...

  8. 【紫书】Quadtrees UVA - 297 四叉树涂色

    题意:前序遍历给出两个像素方块.求两个方块叠加后有几个黑色格子. 题解:每次读进来一个方块,就在二维数组上涂色.每次把白色涂黑就cnt++: 具体递归方法是以右上角坐标与边长为参数,每次通过几何规律往 ...

  9. Quadtrees UVA - 297

    题目链接:https://vjudge.net/problem/UVA-297 题目大意:如上图所示,可以用一个四分树来表示一个黑白图像,方法是用根节点表示整副图像,然后把行列各等分两等分,按照图中的 ...

随机推荐

  1. uboot的mkconfig分析

    uboot的mkconfig是一个shell脚本.对于笔者这种Linux学习初学者,不太可能认真的把shell脚本学习一遍.但是,倘若不能理解mkconfig的含义,又很难从整体的理解uboot(我认 ...

  2. C语言面向对象的简便方法

    都知道C语言是面向过程的,但是现在软件规模越来越大,通过面向对象的方式可以简化开发.业余时间想了个简单的方法,在C中使用一部分面向对象的基本功能.由于C语言自身的限制,并不完善,只能将就用,聊胜于无, ...

  3. NET笔记——IOC详解和Unity基础使用介绍

    说起IOC,可能很多初学者不知道是用来做什么的,今天正好有点时间,就来扫扫盲,顺便巩固下自己. IOC全称是Inversion Of Control,意为控制反转(这些自然百度也有),可什么是控制反转 ...

  4. 查看sqlserver数据库的端口号

    最近正在用sqlserver作为java的数据库进行开发,在写连接字符串的时候,想起一个问题,怎么查找sqlserver的端口号呢?有两种方法 1,用存储过程 --查询端口号exec sys.sp_r ...

  5. realloc 函数的使用

    realloc 函数的使用 #include <stdio.h> #include <stdlib.h> #include <iostream> using nam ...

  6. python 重载 __hash__ __eq__

    __author__ = 'root' from urlparse import urlparse class host_news(): def __init__(self, id, url): se ...

  7. The state of Web Components

    Web Components have been on developers’ radars for quite some time now. They were first introduced b ...

  8. 李洪强iOS开发Swift篇---11_变量&常量&元组

    李洪强iOS开发Swift篇---11_变量&常量&元组 说明: 1)终于要写一写swift了.其实早在14年就已经写了swift的部分博客,无奈时过境迁,此时早已不同往昔了.另外,对 ...

  9. ANDROID_MARS学习笔记_S02重置版_001_Hander\Looper\Message\Thread\ThreadLocal

    一. * class LooperThread extends Thread { * public Handler mHandler; * * public void run() { * Looper ...

  10. SharedPreference.Editor的apply跟commit方法的異同

    相同点: 1.二者都可提交preference的修改数据 2.二者都是原子操作 区别: 1.apply没有返回值而commit返回boolean表明修改是否提交成功 2.apply是将修改数据原子提交 ...